Abstract:
An apparatus includes a rotor and a magnet disposed on the rotor. The apparatus also includes a pole cap proximate to the at least one magnet disposed on the rotor. The pole cap is magnetically coupled to the magnet and has a laterally asymmetric profile.
Abstract:
A motor includes a motor case, and a rotor and a stator, which are disposed in the case. The case has a tubular portion, a front cover mounted to an axial end of the portion, and a rear cover mounted to the other axial end of the portion. The rotor has a rotary shaft and the stator includes a plurality of teeth, which extend toward a central axis of the shaft and are circumferentially disposed at equal intervals. Between each circumferentially adjacent pair of the teeth, a slot extending toward the axis is formed. In each slot, a U-shaped segment is inserted in parallel with the axis. The distal ends of the segments projecting out from the slots are electrically interconnected, thereby forming an SC coil including the segments disposed circumferentially. The SC coil includes a receiving terminal, and the terminal includes leads extending in parallel to the axis.
Abstract:
A method for manufacturing a lamination for electro motor rotors that have skew or helical slots by forming at least one boss on a face of the lamination and reducing a thickness of a first portion of the boss. The reduction in thickness may be by carrying out a localized narrowing of the thickness of the first portion and the boss may be manufactured by pressing the lamination. The localized narrowing may be carried out by misalignment of a die relative to a punch within a mould.
Abstract:
An electric machine includes a stator and a rotor core including a first rotor portion positioned adjacent the stator and having an outside diameter. The first rotor portion includes a plurality of elongated slots that define a plurality of poles. The electric machine also includes a plurality of magnets. Each of the plurality of magnets is positioned within one of the slots and arranged such that each of the plurality of poles has a magnetic arc length that is different than a magnetic arc length of any adjacent pole.
Abstract:
Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
Abstract:
A steering drive for a motor vehicle comprising a steering wheel, a steering column, on which the steering wheel is disposed, a connecting rod, which interacts with the steering column to deflect the wheels of the motor vehicle, an electric motor, which is provided for boosting the steering thrust, as well as a belt drive, the electric motor interacting with the connecting rod via the belt drive. Said electric motor comprises a stator having twelve stator teeth as well as a rotor having ten rotor poles, the rotor poles being spaced apart from each other by an air gap and embodied as sinus poles.
Abstract:
An internal permanent magnet machine has multiple rotor sections, each section having multiple rotor laminations. Permanent magnets are placed asymmetrically in lamination openings to attenuate oscillations in torque caused by harmonic components of magnetic flux.
Abstract:
A electric motor is disclosed in which torque ripple is reduced. The electric motor includes a single motor shaft. Rotors are disposed so as to be mutually offset in phase, and the rotors are secured to the motor shaft. Stators are arranged so as to individually correspond to the rotors, and the stators are disposed so as to be matched in phase. The phases of torque ripple generated in each motor unit, which is comprised of a combination of a single rotor and a single stator, are offset.
Abstract:
Apparatuses and methods for an improved wind turbine and blade assembly are disclosed. The wind turbine has a wind turbine assembly being rotatably driven by the blade assembly. The wind turbine assembly has a shaft connected to an inner wheel by a supporting structure. A magnet array is disposed circumferentially about the inner wheel. A transformer array is disposed circumferentially about an outer wheel. The shaft rotates the inner wheel with the magnet array within the outer wheel having the transformer array for producing electricity. Magnets within the array are angled relative to the inner wheel to reduce the cogging torque. Blades are held in a neutral position into the wind by tensioning means, which resists rotation of the blades out of the wind to tune the blades to the wind velocity.
Abstract:
In a brushless motor including a rotor having 2n poles and a stator having 3n slots, segment magnets are arranged in three columns in the axial direction, thus constituting rotor poles. The segment magnets of adjacent columns, which are identical in polarity, are displaced in the circumferential direction, thus forming a three-stage step-skew structure. The skew angle θskew of each segment magnet is set to an electrical angle of 60° to 75°. The center angle of θm of each segment magnet is set to 46.8° to 52.7°.