Abstract:
Apparatus is are disclosed for selective alteration and control of door movement modes, the apparatus being primarily non-hydraulic and incorporated with a known mechanism which is functional independently from the apparatus in one mode of operation and which includes a piston for controlling door closing characteristics by selected fluid flow within the mechanism. The apparatus includes a motor driven lead screw having a linearly movable shuttle unit mounted thereon, the shuttle unit being positioned relative to the piston of the mechanism to accommodate nonattached contact with the piston to urge the piston, when the shuttle unit is moved, in a direction that will at least provide selective assistance with door opening in another mode of operation.
Abstract:
A power window assembly in a vehicle includes first and second slidable window panes mounted to the vehicle for movement in opposing lateral directions towards each other to a closed position and away from each other to an open position. A first pair of connector arms is operatively connected to the first window pane and a second pair of connector arms is operatively connected to the second window pane. A power drive mechanism engages the connector arms and selectively pulls one of the connector arms of the first pair and one of the connector arms of the second pair away from each other to pull the window panes towards the open position and selectively pulls the other of the connector arms of the first pair and the other of the connector arms of the second pair towards each other for pulling the window panes towards the closed position.
Abstract:
A door controlling device for opening and closing a door in a wall has a first arm, one end of which is mounted to the wall and the other end of which is pivotally attached to the second end of a second arm. The first end of the second arm is pivotally attached to the top of a door and is adapted for rotation about a horizontal axis at the first end thereof. An electric motor attached to the device has a shaft which drives a gear train, and an output shaft of the gear train is connected to the input end of an electrically operated clutch. The output shaft of the clutch is connected to the first end of one of the arms such that upon the simultaneous engagement of the clutch and the energizing of the motor, that arm will be rotated about the horizontal axis at the first end and will cause the door to be opened or closed. Also, a current measuring device for determining whether the motor is drawing on excessive amount of electric current, a door open sensor for generating a signal when the door is in a fully opened position, and a door closed sensor for generating a signal when the door is in a fully closed position are all connected to a computer to control the opening and closing of a door.
Abstract:
A clutch selectively transmits torque and rotary motion from a spindle having an axis of rotation to a drum. First and second shoe members disposed radially between the spindle and the drum move radially with respect to the axis of rotation between an engaged position and a disengaged position with respect to the drum. The first and second shoe members are responsive to acceleration for moving into the engaged position and responsive to rotational speed for moving into the disengaged position. A biasing spring normally maintains the first and second shoe members in the disengaged position when the spindle is at rest.
Abstract:
A garage door operator is disclosed to have a front coupling for a threaded screw of the operator and the rotor of the motor. The coupling includes a first coupling device that is a unitary coupling member with opposing recesses for receiving each of the rotor shaft and an end portion of the screw. The unitary coupling member thereby connects the screw to the motor for torque transmission from the motor. The second coupling device includes a thrust containment device that is supported on the screw, and an intermediate assembly disposed between the thrust containment device and an end portion of the guide rail of the door operator. A retainer component of the intermediate assembly restricts expansion of the thrust containment device.
Abstract:
An automated window system and method for a building utilizes a pair of gas springs to bias a window panel outward from a corresponding frame. A force opposing the gas springs is supplied by a motor driven spindle selectively winding and unwinding a cord coupled to the window panel sash adjacent the jamb portion of the frame and window. The cord is slidably retained to the jamb portion of the window sash through a pair of threadable pulls in order to equalize the forces supplied opposing the gas springs in the event of uneven winding of the cord due to buffeting or other forces while the window panel is being moved between an "open" to a "closed" position thereof.
Abstract:
An open-and-close control device for a horizontally slidable vehicle door fitted with a lock that includes a horizontal endless screw rotatably, movably held within a rail fixed to a vehicle body adjacent the vehicle door, and adapted to be rotated by a rotary electric motor. The horizontal endless screw engages a threaded aperture in a slide translationally movable in the rail, wherein the slide is connected by a single connecting rod to an inner arm positioned on the vehicle door. The arm is oriented towards an inside of the vehicle body such that the single connecting rod is at an angle of less than about 25.degree. to the horizontal endless screw. Opening the vehicle door is initiated by a substantially outward transverse translation of at least part of the vehicle door.
Abstract:
A power door operator for vehicles requiring uninterrupted car surfaces in a door area and minimal use of car interior space, particularly in the closed position. The equipment provided utilizes a rotary motor drive and distributed gear system for moving opposing door panels away from an opening in the car wall. Movement of the doors into and out of the car door opening is accomplished through use of controlled reaction travel of the rotary drive motor.
Abstract:
A driving mechanism is disposed in the bottom of a door for driving the door and includes a reduction gearing and a motor fixed to the door, and a gear coupled to the reduction gearing and engaged with two shafts for rotatably supporting the wheels of the door so as to apply a downward force to the pinions in order to prevent the wheels moving upward away from the tracks. A retaining device is fixed to one of the tracks or fixed to the ground and has an opening for engaging with one of the pinions so as to maintain the door in place.
Abstract:
A mechanism for controlling the raising and lowering of a door comprising a speed reduction gearing, a high speed input shaft and a low speed output shaft connected to the gearing, and a governor mounted on the input shaft for regulating the input shaft's rotational speed. More particularly, the mechanism is provided with a brake having a movable brake shoe, a temperature sensitive link and an elongate member having a central portion coupled to the brake shoe. As well, the first portion of the elongate member is engageable with the temperature sensitive element and a second portion of the elongate member is engageable with the actuator. In this way, the elongate member is provided for moving the brake shoe to the release position in response to one of (1) the temperature sensitive link upon the temperature reaching a predetermined temperature and (2) the actuator.