Abstract:
The invention relates to an integrated circuit comprising: a block comprising: first (38) and second (40) oppositely doped semiconductor wells; standard cells (42, 43) placed next to one another, each standard cell (42) comprising first transistors (60, 62), and a clock tree cell (30) encircled by standard cells, the clock tree cell (30) comprising: a third semiconductor well (104) having the same doping type as the doping of the first well (38); second transistors (100, 102); a semiconductor strip (106) extending continuously around the third well (104), and having the opposite doping type to the doping of the third well, so as to electrically isolate the third well (104) from the first well (38).
Abstract:
A simulation method for a P-I-N junction photodiode uses a model that may include a diode model configured to characterize electrical behavior of the P-I-N junction photodiode, and an input for applying a fictitious electrical signal representing optical power received by the P-I-N junction photodiode. A current source model may be coupled to the diode model and may have a transient response to a variation of the fictitious electrical signal, based upon a sum of a first first-order transient response with a time constant based upon to a transit time of carriers in a depletion region of the P-I-N junction, and a second first-order transient response with a time constant based upon a diffusion time of carriers outside of the depletion region. The first and second responses may be respectively weighted by a length of the depletion region and a length of the P-I-N junction outside the depletion region.
Abstract:
A method for manufacturing a wafer on which are formed resonators, each resonator including, above a semiconductor substrate, a stack of layers including, in the following order from the substrate surface: a Bragg mirror; a compensation layer made of a material having a temperature coefficient of the acoustic velocity of a sign opposite to that of all the other stack layers; and a piezoelectric resonator, the method including the successive steps of: a) depositing the compensation layer; and b) decreasing thickness inequalities of the compensation layer due to the deposition method, so that this layer has a same thickness to within better than 2%, and preferably to within better than 1%, at the level of each resonator.
Abstract:
A MOS transistor protected against overvoltages formed in an SOI-type semiconductor layer arranged on an insulating layer itself arranged on a semiconductor substrate including a lateral field-effect control thyristor formed in the substrate at least partly under the MOS transistor, a field-effect turn-on region of the thyristor extending under at least a portion of a main electrode of the MOS transistor and being separated there-from by said insulating layer, the anode and the cathode of the thyristor being respectively connected to the drain and to the source of the MOS transistor, whereby the thyristor turns on in case of a positive overvoltage between the drain and the source of the MOS transistor.
Abstract:
An integrated circuit may include a digital output port including a buffer stage that includes subassemblies of MOSFET transistors. One subassembly may include two pull-up transistors having sources connected to a common high voltage, and having drains connected to a common node connected to the output terminal. Another subassembly may include pull-down transistors having sources connected to a common low voltage, and having drains connected to the common node. The pull-up and pull-down transistors are formed in a thin semiconductor layer of an FDSOI substrate. The substrate may include a thick semiconductor layer and an oxide layer separating the thin and thick semiconductor layers. Areas of the thick semiconductor layer facing the pull-up and pull-down transistors may be connected to a circuit configured to vary a threshold voltage of the pull-up and pull-down transistors.
Abstract:
A power switch includes first and second MOS transistors in series between first and second nodes. Both the first and second transistors have a gate coupled to its substrate. First and second resistive elements are coupled between the gate of the first transistor and the first node, and between the gate of the second transistor and the second node, respectively. A triac is coupled between the first and second nodes. The gate of the triac is coupled to a third node common to the first and second transistors. A third MOS transistor has a first conduction electrode coupled to the gate of the first transistor and a second conduction electrode coupled to the gate of the second transistor.
Abstract:
Method of elementary updating a check node of a non-binary LDPC code during a decoding of a block encoded with said LDPC code, comprising receiving a first input message (U) and a second input message (V) each comprising nm doublets having a symbol and an associated metric, delivering an output message (S) possessing nm output doublets by computing a matrix of nm2 combined doublets on the basis of a combination of the doublets of the two input messages (U,V), and reducing the number of the combined doublets so as to obtain the nm output doublets of the output message (S) possessing the nm largest or lowest metrics. The method further includes tagging redundant symbols within each input message (U, V) and fixing same at a reference value, the value of the metric of each combined doublet resulting from a combination of at least one doublet comprising a tagged redundant symbol.
Abstract:
At least three electrically conducting blocks are disposed within an isolating region; and at least two of them are mutually separated and capacitively coupled by a part of the isolating region. At least two of them, being semiconductor, have opposite types of conductivity or identical types of conductivity, but with different concentrations of dopants, and these are in mutual contact by one of their sides. The mutual arrangement of these blocks within the isolating region, their type of conductivity and their concentration of dopants form at least one electronic module. Some of the blocks define input and output blocks.
Abstract:
A secure memory includes a bistable memory cell having a programmed start-up state, and means for flipping the state of the cell in response to a flip signal. The memory may include a clock for generating the flip signal with a period, for example, smaller than the acquisition time of an emission microscope.
Abstract:
A device includes, within a layer of silicon on insulator, a central semiconductor zone including a central region having a first type of conductivity, two intermediate regions having a second type of conductivity opposite to that of the first one, respectively disposed on either side of and in contact with the central region in order to form two PN junctions, two semiconductor end zones respectively disposed on either side of the central zone, each end zone comprising two end regions of opposite types of conductivity, in contact with the adjacent intermediate region, the two end regions of each end zone being mutually connected electrically in order to form the two terminals of the device.