Abstract:
A balloon catheter having an improved maneuverability. The catheter includes an elongated catheter shaft with proximal and distal ends, proximal and distal shaft sections, a balloon on the distal catheter shaft section having proximal and distal shaft sections, a guidewire receiving lumen extending along at least a portion of the catheter shaft to the catheter shaft distal end, and a tip member on a distal end of the catheter. A proximal end of the tip member is spaced distally apart from the distal end of the catheter shaft and is in fluid communication therewith. The distal balloon shaft is sealingly secured to the catheter shaft and the tip member.
Abstract:
The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.
Abstract:
Medical devices, and particularly intracorporeal devices for therapeutic or diagnostic uses, having a component chemically modified by plasma polymerization. The medical device comprises a substrate with a plasma polymerized functionality bonded to a surface of at least a section thereof. The plasma polymerized film on a first component of the medical device allows for bonding an agent or a second component to the first component. In one embodiment, the plasma polymerized film facilitates fusion or adhesive bonding of a first component to a second component formed of a material which is dissimilar to, incompatible with, or otherwise not readily bondable to the substrate material of the first component. In another embodiment, a bioactive agent is bonded to the plasma polymerized film on the component, for presenting or delivering the bioactive agent within a body lumen of the patient.
Abstract:
An improved guiding member for use within a body lumen having a unique combination of superelastic characteristics. The superelastic alloy material has a composition consisting of about 30% to about 52% (atomic) titanium, and about 38% to 52% nickel and may have one or more elements selected from the group consisting of iron, cobalt, platinum, palladium, vanadium, copper, zirconium, hafnium and niobium. The alloy material is subjected to thermomechanical processing which includes a final cold working of about 10 to about 75% and then a heat treatment at a temperature between about 450null and about 600null C. and preferably about 475null to about 550null C. Before the heat treatment the cold worked alloy material is preferably subjected to mechanical straightening. The alloy material is preferably subjected to stresses equal to about 5 to about 50% of the room temperature ultimate yield stress of the material during the thermal treatment. The guiding member using such improved material exhibits a stress-induced austenite-to-martensite phase transformation at an exceptionally high constant yield strength of over 90 ksi for solid members and over 70 ksi for tubular members with a broad recoverable strain of at least about 4% during the phase transformation. An essentially whip free product is obtained.
Abstract:
A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a therapeutic, diagnostic or hydrophilic top coat, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of a hydrophilic compound, a grafting component, and salt, wherein the polymerized grafting component contains uncrosslinked domains. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device coated with a polymeric primer or without a primer, or to a stent.
Abstract:
A balloon formed of a single layer of polybutylene terephthalate and polytetramethylene ether glycol terephthalate copolymer in a substantially unblended form. The copolymer has a flexural modulus of greater than about 150,000 psi. The presently preferred copolymer is Hytrelnull 8238 by DuPont. The balloon of the invention would be substantially unblended, defined as greater than about 60% by weight to about 100% by weight of the copolymer. The balloon is formed in a series of molds. The balloon of the invention exhibits high rupture pressure and low compliance coupled with good lesion cross and recross ability.
Abstract:
A method of forming a thin-walled polymeric tubular member for an intralumenal device, and the member produced thereby. The thin-walled tubular member extruded using the method of the invention is suitable for use a sleeve for a catheter shaft or balloon. The thin-walled tubular member has a single wall thickness of not greater than about 0.003 inch (0.0076 cm). In the method of the invention, the thin-walled tubular member is formed by co-extruding a thin-walled first polymer layer with a removable second polymer layer, and the two layers are separated by dissolution or physical removal of the second layer, to leave the first layer, with the first polymer layer forming the thin-walled tubular member. Because the method of the invention involves co-extruding a removable second polymer layer along with the thin-walled first polymer layer, conventional tooling dimensions in the extruder may be used.
Abstract:
A balloon catheter with a balloon having first and second tapered sections adjacent the distal and proximal ends of the working length of the balloon, respectively, and third and fourth tapered sections adjacent the first and second tapered section, respectively. The first and second tapered sections taper at a first angle to a smaller outer diameter than the inflated outer diameter of the working length inflated within a deployment range of the balloon, and the third and fourth tapered sections taper at a second angle larger than the first angle. The balloon has expandable retention sections proximal and the distal to the working length of the balloon for inhibiting migration of a stent mounted on the balloon.
Abstract:
Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings include block-polymers comprising at least one poly(hydroxyacid) or poly(hydroxy-alkanoate) block, at least one block of a biologically compatible polymer and at least one type of linking moiety.