Abstract:
Disclosed is a composition, an organic insulating film including the same, an organic thin film transistor including the organic insulating film, an electronic device including the organic thin film transistor and methods of fabricating the same. In the composition, an organic polymer material having a carboxyl group and an organic silane material having an electron-donating group are included to thus realize a structure which may further stabilize an unreacted crosslinking material. Thereby, a hysteresis phenomenon may be decreased and transparency may be increased, thus making it possible to assure stability upon exposure to air. Accordingly, the lifetime of the organic thin film transistor may be lengthened.
Abstract:
The present invention relates to TNFR2-TWEAKR fusion protein, more precisely to TNFR2-TWEAKR fusion protein acting as a double-antagonist to TNF-α and TWEAK, known as major causes of autoimmune arthritis which is one of autoimmune diseases. When the composition comprising TNFR2-TWEAKR fusion protein was treated to Th17 cells, the secretion of the inflammatory cytokine IL-17 was reduced but the secretion of the anti-inflammatory cytokine IL-10 generated in Treg cells was increased. Such effect of TNFR2-TWEAKR fusion protein was far greater than that of a single protein such as TNFR2-Fc or TWEAK-Fc. The TNFR2-TWEAKR fusion protein of the present invention has not only excellent treatment effect on arthritis in CIA mouse model not also excellent treatment effect on autoimmune rheumatoid arthritis by increasing the expression of Treg, the immune suppressive cells. Therefore, the TNFR2-TWEAKR fusion protein of the present invention can be effectively used as an active ingredient for the composition for the prevention and treatment of autoimmune disease.
Abstract:
A quantum dot light emitting device includes; a substrate, a first electrode disposed on the substrate, a second electrode disposed substantially opposite to the first electrode, a first charge transport layer disposed between the first electrode and the second electrode, a quantum dot light emitting layer disposed between the first charge transport layer and one of the first electrode and the second electrode, and at least one quantum dot including layer disposed between the quantum dot light emitting layer and the first charge transport layer, wherein the at least one quantum dot including layer has an energy band level different from an energy band level of the quantum dot light emitting layer.
Abstract:
The present invention relates to a composition containing Substance P for preventing or treating an inflammation. The composition containing Substance P according to the present invention exhibits the effect of decreasing leukocytes, neutrophils and hematopoietic stem cells in a blood, which are associated with the inflammation, and of increasing anti-inflammatory cytokines, regulatory T-lymphocytes, anti-inflammatory macrophages and the like, thereby terminating inflammatory response at an early stage, and is thus highly effective in preventing and treating the inflammation caused by a non-traumatic, traumatic, infectious or ischemic retinal injury.
Abstract:
A method of manufacturing a silicon optoelectronic device, a silicon optoelectronic device manufactured by the method, and an image input and/or output apparatus including the silicon optoelectronic device are provided. The method includes preparing an n- or p-type silicon-based substrate, forming a microdefect pattern along a surface of the substrate by etching, forming a control film with an opening on the microdefect pattern, and forming a doping region on the surface of the substrate having the microdefect pattern in such a way that a predetermined dopant of the opposite type to the substrate is injected onto the substrate through the opening of the control film to be doped to a depth so that a photoelectric conversion effect leading to light emission and/or reception by quantum confinement effect in the p-n junction occurs. The silicon optoelectronic device has superior light-emitting efficiency, can be used as at least one of a light-emitting device and a light-receiving device, and has high wavelength selectivity. In addition, the silicon optoelectronic device panel having the two-dimensional array of the silicon optoelectronic devices can be applied in the image input and/or output apparatus capable of directly displaying an image and/or inputting optical information in a screen.
Abstract:
A graphene structure and a method of forming the same may include a graphene formed in a three-dimensional (3D) shape, e.g., a column shape, a stacking structure, and a three-dimensionally connected structure. The graphene structure can be formed by using Ge.
Abstract:
Disclosed are a composition including a silane-based organic/inorganic hybrid material having a multiple bond and one or more organic metal compounds and/or one or more organic polymers, an organic insulator including the composition, an organic thin film transistor (OTFT) including the organic insulator and an electronic device including the OTFT. The organic insulator including the composition for preparing an organic insulator has increased charge mobility and an increased on/off current ratio, thus exhibiting improved properties, and the organic thin film transistor manifests uniform properties due to the absence of hysteresis.
Abstract:
A graphene-polymer layered composite and a method of manufacturing the same is provided. A graphene-polymer layered composite includes polymer layers surrounding a graphene sheet, and may include numerous polymer layers and graphene sheets in an alternating stacked configuration. The graphene-polymer layered composite has the characteristics of a polymer in that it provides flexibility, ease of manufacturing, low manufacturing costs, and low thermal conductivity. The graphene-polymer layered composite also has the characteristics of graphene in that it has a high electrical conductivity. Due to the low thermal conductivity and high electrical conductivity, the graphene-polymer layered composite may be useful for electrodes, electric devices, and thermoelectric materials.
Abstract:
A thermoelectric material including: a nanostructure; a discontinuous area disposed in the nanostructure, and an uneven portion disposed on the nano structure.
Abstract:
Example embodiments of the present invention relate to an organic insulator composition, an organic insulating film having the organic insulator composition, an organic thin film transistor having the organic insulating film, an electronic device having the organic thin film transistor and methods of forming the same. Other example embodiments of the present invention relate to an organic insulator composition including a fluorinated silane compound that may be used to improve the charge carrier mobility and hysteresis of an organic thin film transistor. An organic insulator composition including a fluorinated silane compound and an organic thin film transistor using the same is provided. The hysteresis and physical properties, e.g., threshold voltage and/or charge carrier mobility, of the organic thin film transistor may be improved by the use of the organic insulator composition. The organic thin film transistor may be effectively used in the manufacture of a variety of electronic devices including liquid crystal displays (LCDs) and/or photovoltaic devices.