Abstract:
A display device includes: a first electrode; a second electrode; and an emitting material layer which is interposed between the first electrode and the second electrode, the emitting material layer being doped with an electric charge transport material of which content varies along a thickness direction and comprising a plurality of sub-layers staked in sequence.
Abstract:
A multifunctional video apparatus and a method of providing a user interface (UI) thereof. The multifunctional video apparatus has diverse functions such as image capturing, image reproduction, image editing, image input/output from/to an external device, etc., and provides a UI capable of performing the above-described functions more conveniently.
Abstract:
A method for forming fine patterns of a semiconductor device includes forming an etching film on a substrate having first and second areas, forming first mask patterns on the substrate to have a first pattern density in the first area and a second pattern density in the second area, forming first capping patterns between the first mask patterns, forming second capping patterns between the first mask patterns, such that recess areas are formed between second capping patterns, and such that a first etching pattern is defined to include the first and second capping patterns, forming second mask patterns in the recess areas to include the first and second mask patterns, removing one of the first and second etching patterns, such that a single etching pattern is remaining on the substrate, and etching the etching film using the remaining etching pattern as an etch mask to form etching film patterns.
Abstract:
A semiconductor memory device includes a plurality of rows, each row comprising a plurality of active regions arranged at a pitch wherein the active regions in adjacent rows are shifted with respect to each other by one half of the pitch, wherein a distance between each active region in a row is equal to a distance between active regions in adjacent rows.
Abstract:
Methods of forming field effect transistors having buried gate electrodes include the steps of forming a semiconductor substrate having a sacrificial gate electrode buried beneath a surface of the semiconductor substrate and then removing the sacrificial gate electrode to define a gate electrode cavity beneath the surface. The gate electrode cavity is lined with a gate insulating layer. The lined gate electrode cavity is filled with a first insulated gate electrode. A second insulated gate electrode is also formed on a portion of the semiconductor substrate extending opposite the first insulated gate electrode so that a channel region of the field effect transistor extends between the first and second insulated gate electrodes. Source and drain regions are also formed adjacent opposite ends of the first and second insulated gate electrodes.
Abstract:
In a method of manufacturing a capacitor and a method of manufacturing a dynamic random access memory device, an insulating layer covering an upper portion of a conductive layer may be provided with an ozone gas so as to change the property of the upper portion of the insulating layer. The upper portion of the insulating layer may be chemically removed to expose the upper portion of the conductive layer. The exposed upper portion of the conductive layer may be removed so as to transform the conductive layer into a lower electrode. The remaining portion of the insulating layer may be removed, and an upper electrode may be formed on the lower electrode.
Abstract:
An apparatus and method to tag ID in photos by utilizing geographical positions is provided. The apparatus to tag a photo with an ID based on a relative physical position includes a pose calculation module to calculate the pose of a camera in space photographing subjects, a photographing angle calculation module to calculate an angle at which each of the subjects is photographed, by using the calculated pose information and camera information, a coordinates calculation module to obtain the calculated photographing angle and the predetermined ID information of the subjects and to calculate the relative distance and coordinates between the subjects, a valid subject selection module to identify the subjects located within the photographing angle by using the calculated relative distance and coordinates, and an image tagging module to tag the photographed image ID information of the identified subjects.
Abstract:
Embodiments relate to a method of manufacturing an image sensor which may include forming a gate pattern including a tunnel oxide film, an oxide-nitride-oxide (ONO) film, a floating gate and a control gate over a semiconductor substrate. An oxide film and a nitride film may be formed over the semiconductor substrate including the gate pattern. A photoresist pattern may be formed which covers the oxide film and the nitride film formed over the gate pattern. The nitride film may be etched in a region not covered by the photoresist pattern. The oxide film may be etched to have a predetermined thickness. A deep implant process may deeply implant an N-type dopant into the semiconductor substrate. Ashing and cleaning processes may remove the remaining photoresist pattern.
Abstract:
A method of correcting a design pattern of a mask takes into account the overlay margin between adjacent one of actual patterns that are stacked on a substrate. First, a pattern of a photomask for forming a first one of the actual patterns on a substrate is conceived. Also, information representing the image of a second one of the actual patterns is produced. Then, optical proximity correction (OPC) is performed on the first pattern based on the information. The information may be obtained by simulating the transcription of a photomask having a second pattern designed to form the second actual pattern, or by forming the second actual pattern and then capturing the image of the second actual pattern. Accordingly, a sufficient margin is provided between the second actual pattern and the first pattern on which the optical proximity correction has been performed.
Abstract:
A semiconductor device includes an upper gate trench crossing an active region of a semiconductor substrate, a lower gate trench overlapping the upper gate trench at both ends, disposed at a lower level than the upper gate trench, and having a smaller width than the upper gate trench and wherein the lower gate trench is spaced apart from sidewalls of the upper gate trench. The semiconductor device further includes a gate pattern partially covering the bottom of the upper gate trench between the sidewall of the upper gate trench and the lower gate trench, filling the lower gate trench, and covering sidewalls of the active region adjacent to the bottom and sidewalls of the lower gate trench.