Abstract:
A nonvolatile memory device includes a memory cell array including a plurality of nonvolatile memory cells each having a resistance corresponding to one of a plurality of first resistance distributions, a temperature compensation circuit including one or more reference cells each having a resistance corresponding to one among one or more second resistance distributions, and a data read circuit including a compensation unit and a sense amplifier, the compensation unit being adapted to supply compensation current to a sensing node, an amount of the compensation current varying based on the resistance of each reference cell, and the sense amplifier being adapted to compare the level of the sensing node with a reference level and to output a comparison result.
Abstract:
A nonvolatile memory device comprises a one-time-programmable (OTP) lock bit register. The nonvolatile memory device comprises a variable-resistance memory cell array comprising an OTP block that store data and a register that stores OTP lock state information indicating whether the data is changeable. The register comprises a variable memory cell. An initial value of the OTP lock state information is set to a program protection state.
Abstract:
Provided are a nonvolatile memory and related method of programming same. The nonvolatile memory includes a memory cell array with a plurality of nonvolatile memory cells and a write circuit. The write circuit is configured to write first logic state data to a first group of memory cells during a first program operation using an internally generated step-up voltage, and second logic state data to a second group of memory cells during a second program operation using an externally supplied step-up voltage.
Abstract:
In one embodiment, the semiconductor device includes a non-volatile memory cell array. Memory cells of the non-volatile memory cell array are resistance based, and each memory cell has a resistance that changes over time after data is written into the memory cell. A write address buffer is configured to store write addresses associated with data being written into the non-volatile memory cell array, and a read unit is configured to perform a read operation to read data from the non-volatile memory cell array. The read unit is configured to control a read current applied to the non-volatile memory cell array during the read operation based on whether a read address matches one of the stored write addresses and at least one indication of settling time of the data being written into the non-volatile memory cell array.
Abstract:
Disclosed are an apparatus for cleaning a membrane module and a method therefor, which can minimize consumption of chemicals required to clean the membrane module while maximizing a recovery cleaning rate of the membrane module without completely stopping a water treatment operation. The cleaning apparatus includes a first flushing bath for flushing a membrane module transferred from a water treatment tank, and a first chemical cleaning bath for cleaning the membrane module, which has been completely flushed and transferred from the first flushing bath, by use of a first chemical solution.
Abstract:
A phase change memory device includes a memory cell having a phase change material, a write driver adapted to supply a program current to the memory cell during a programming interval, and a pump circuit adapted to enhance a current supply capacity of the write driver during the programming interval. The pump circuit is activated prior to the programming interval in response to an external control signal.
Abstract:
The present invention relates to an acryl-silicon rubber complex polymer which has a seed-core-shell structure wherein vinyl monomer and hydrophilic monomer are cross-linked on the seed; the acryl-silicon complex IPN core having an IPN (interpenetrating network) structure formed by radical polymerization of acryl monomer and hydrosilyation of silicon rubber in which silicon rubber particles are dispersed by being cross-linked to acryl rubber, in a continuous phase, is formed on the seed; and a shell prepared by graft-polymerization of C1-C4 alkyl methacrylate to the acryl-silicon complex IPN core is formed on the core, and a method of preparation and use of the same, thereby having excellent impact resistance, weatherability and gloss, so that it can be effectively used as an impact modifier for vinyl chloride resin.
Abstract:
A resistance variable memory device includes a resistance variable memory cell array, a data register that prefetches read data of the resistance variable memory cell array, a data output unit that receives the prefetched read data from the data register and outputs the received data, and a page mode setting unit that sets one of a first page mode and a second page mode as a page mode. In the first page mode, the data output unit sequentially reads the read data prefetched in the data register as page addresses are sequentially received, and in the second page mode, the data output unit sequentially reads the read data prefetched in the data register after a start page address among a plurality of page addresses has been received
Abstract:
A phase-change random access memory device is provided. The phase-change random access memory device includes a global bit line connected to a write circuit and a read circuit, multiple local bit lines, each being connected to multiple phase-change memory cells, and multiple column select transistors selectively connecting the global bit line with each of the multiple local bit lines, each column select transistor having a resistance that varies depending on its distance from the write circuit and the read circuit.
Abstract:
The present invention discloses a submerged hollow fiber membrane module which is of such a structure that it is easy to expand a module processing capability according to a treatment capacity, provides convenient module coupling properties and module manufacturing properties, maintains a stable flux under an efficient air diffusion condition and prevents the damage of membranes and water leakage caused by the loosening of module connecting regions. The submerged hollow fiber membrane module comprises [I] two module headers (2 and 2′) having a filtrate water collecting portion (3) for collecting filtrate water filtered through hollow fiber membranes and a filtrate water outlet (7), [II] an air diffusion unit 8 consisting of support tubes (9 and 9′) fixing the two module headers (2 and 2′) while keeping them spaced a predetermined distance and air diffusion tubes (11 and 11′) having air diffusion holes (13), and [III] a bundle of hollow fiber membranes (1) having both opposite ends fixed to the insides of the module headers (2 and 2′) by an adhesive (6) so as to form a water collecting space within the module headers (2 and 2′), the ends (5) of the hollow portions of the hollow fiber (20) membranes being opened and disposed in parallel to a filtrate water discharge surface (4).