Abstract:
The present invention discloses an acoustic sensor for rock crack detection including an acoustic emission probe, a probe installation mechanism and a transmission mechanism which transmits a combination of the probe installation mechanism and the acoustic emission probe to a setting position inside a borehole in the monitored rock mass. The acoustic emission probe installation mechanism essentially includes a sleeve component, a guide component, an end cap and springs. The guide component is in pluggable connection with the sleeve component or the end cap. The assembled probe installation mechanism locks the acoustic emission probe in a probe sleeve of the sleeve component. The springs inside the elastic sleeve of the sleeve component are in a compressed state.
Abstract:
The invention discloses an omnidirectional vector electrostatic levitation geophone, comprising: a regular tetrahedron hollowed-out structure, and an inner hollowed-out base and an outer hollowed-out base that are provided inside and outside the regular tetrahedron hollowed-out structure and at equal distance from the regular tetrahedron hollowed-out structure, and have the same structure as and different size from the regular tetrahedron hollowed-out structure; the regular tetrahedron hollowed-out structure has a solid part and a hollowed-out part of each surface thereof, the solid part is a quadrangle divided from angular bisectors of two angles on each surface and an isosceles triangle that abuts the solid part by a surface central point, and the hollowed-out part is two triangles that are divided from the angular bisectors of the two angles and abut each other by a surface center. In the invention, a spatial full-vector detection structure is designed, a completely new omnidirectional vector geophone technology is realized, thereby completing detection of full information including frequency, amplitude, phase, vibration direction of the seismic wave field, especially divergence and curl of a wave force field.
Abstract:
The invention discloses an omnidirectional vector seismic data processing method and apparatus, a computer readable storage medium and a device, applied to an omnidirectional vector geophone. Wherein the method comprises: collecting omnidirectional vector seismic data of the omnidirectional vector geophone, and performing a pre-processing operation on the omnidirectional vector seismic data; performing pressure and shear waves separation operation on the omnidirectional vector seismic data after the data is subject to the pre-processing operation, to obtain pressure wave data and shear wave data; sequentially performing space vector calculation, a wave field recovery operation and an imaging operation on the pressure wave data and the shear wave data, and then performing modeling to obtain a pressure wave velocity model and a shear wave velocity model. The invention solves the problem of the existing seismic exploration technology that cannot measure and process divergence data and curl data of seismic wave field, so as to improve construction, lithology, fluid exploration accuracy and reliability and promote seismic exploration to be developed from structural exploration to lithology exploration and fluid exploration.
Abstract:
The present disclosure discloses a method and an apparatus for processing seismic data, and belongs to the field of geological surveys. The method comprises: stacking seismic trace gathers in a predetermined range among S seismic trace gathers after a Normal Move Out (NMO) correction processing to obtain a model trace, S being an integer; calculating a correlation coefficient of each seismic trace gather with the model trace, and selecting a K-th seismic trace gather with a maximum correlation coefficient; calculating an optimum point of each seismic trace gather from the K-th seismic trace gather to two sides orderly; and performing a residual NMO correction of the seismic trace gathers according to the optimum points.
Abstract:
The invention provides a method for determining oil contents in rocks. The method comprises steps of: measuring a plurality of calibration oil samples having different oil contents, and acquiring a holographic fluorescence spectral intensity corresponding to the calibration oil samples; acquiring a fit relation between the holographic fluorescence spectral intensity and the oil contents of the calibration oil, according to the oil contents of the plurality of calibration oil samples and a plurality of three-dimensional fluorescence spectral intensities corresponding thereto; adding a certain amount of the calibration oil after dilution to rocks to be measured, acquiring a sample of the rocks to be measured and performing a holographic fluorescence measurement of the rock sample to be measured; and introducing the holographic fluorescence spectral intensity of the rock sample to be measured to the fit relation, thus an oil content of the rock sample to be measured is obtained. Accordingly, oil is detectable together with an organic solvent without volatilization of the organic solvent, which not only saves time, but also address a low-detection-limit problem for oil content resulting from volatilization of oil when the organic solvent is volatilized in the conventional method.
Abstract:
The present invention relates to a method for identification of geology lithological difference which includes: obtaining seismic amplitude data of a geology object to be detected; using a seismic amplitude value of each grid point as the initial value of chaos nonlinear iteration equation and then to iterate by the equation, and recording an iteration convergence rate of each grid point when the iteration reaches a stable state; and depicting the lithological difference of the geology object to be detected by the difference of the convergence rate of each grid point. The solution of the present invention can identify the geology lithological difference more sensitively.
Abstract:
A hydrogenation method and distillate two-phase hydrogenation reactor in which the size of an upper space of the reactor is greater than that of a lower catalyst bed part. The reactor comprises 2 to 4 catalyst beds. An inner component for gas replenishment and for stripping a liquid-phase stream containing impurities is arranged between at least one adjacent catalyst bed and comprises a separator plate and exhaust pipes. The separator plate is provided with multiple downcomer through holes. The separator plate is connected with a plurality of exhaust pipes. The exhaust pipes are vertically arranged above the separator plate. The top parts of the exhaust pipes are in contact with the lower part of the upper catalyst bed.
Abstract:
The present invention relates to viscoelastic fracturing fluids comprising one or more zwitterionic surfactants having multiple hydrophobic and hydrophilic groups. The viscoelastic fracturing fluids can be used to stimulate reservoir and increase oil and gas production.
Abstract:
The present invention relates to a method for the selective hydrogenation of an unsaturated compound, particularly a method in an unsaturated compound or a mixture containing unsaturated compounds for increase of the light sulphides weight, hydrogenation of a polyunsaturated compound and isomerization of a monounsaturated compound. The method uses a supported catalyst. The supported catalyst contains at least one Group VIB non-noble metal oxide and at least one Group VIII non-noble metal oxide deposited on a carrier; and the catalyst has an optimized acid distribution on the surface of the catalyst, and more preferably has an optimized Group VIII/VIB metal ratio and a Group VIII non-noble metal density per unit of catalyst surface area.
Abstract:
The present invention relates to a selective hydrogenation catalyst for an unsaturated compound. The supported catalyst contains at least one Group VIB non-noble metal oxide and at least one Group VIII non-noble metal oxide deposited on a carrier; and the catalyst has an optimized acid distribution on the surface of the catalyst, and more preferably has an optimized Group VIII/VIB metal ratio and a Group VIII non-noble metal density per unit of catalyst surface area. Using the catalyst of the present invention can have the following advantages: the weight increase of light sulphides in an unsaturated compound or a mixture containing unsaturated compounds, the hydrogenation of a polyunsaturated compound, the isomerization of a monounsaturated compound, high operation flexibility and a significant improvement in the effects of a hydrogenation treatment.