Abstract:
An optical transmitter includes: a driving circuit that includes drivers each corresponding to a configuration bit of an input electrical data sequence; a MZ optical modulator that includes a first phase shifter provided in an arm and a second phase shifter provided in an arm; first capacitance elements that are electrically connected between the driving unit and the first phase shifter, each include an electric capacity weighted in response to a bit number of the configuration bit, and generate a first multilevel signal to be supplied to the first phase shifter; and second capacitance elements that are electrically connected between the driving circuit and the second phase shifter, each include an electric capacity weighted in response to a bit number of the configuration bit, and generate a second multilevel signal to be supplied to the second phase shifter.
Abstract:
A grating coupler includes a grating including a core and an anti-phase reflection coating provided on at least one part of the grating. The anti-phase reflection coating includes a high refractive index layer and a buffer layer. The high refractive index layer has at least one selected from a plurality of attributes characterizing the high refractive index layer. The at least one selected attribute gradually deceases along a propagation direction of light in the core of the grating.
Abstract:
An optical circuit module comprises a substrate with a first optical coupler connected to a first optical waveguide and a second optical coupler connected to a second optical waveguide on a substrate surface side; and a semiconductor photonic device mounted on the substrate, wherein the semiconductor photonic device has a third optical waveguide and a fourth optical waveguide extending to a first end face that faces the substrate surface, and wherein the third optical waveguide is optically connected to the first optical coupler and the fourth optical waveguide is optically connected to the second optical coupler.
Abstract:
There is provided an optical multiplexing and de-multiplexing element which is provided with a slab waveguide and a waveguide structure and can reduce radiation loss caused in a connection part between the slab waveguide and the waveguide structure. The waveguide structure includes a multimode interference (MMI) waveguide coupler and a narrow-width waveguide, the MMI waveguide coupler and the narrow-width waveguide are connected to each other in this order from a connection position with the slab waveguide along the waveguide direction, step portions are formed on both sides of the MMI waveguide coupler along the waveguide direction, and the thickness of the step portion is smaller than the thickness of the MMI waveguide coupler.
Abstract:
A low-cost optical circuit, in which influence of reflected light is reduced, is provided. According to an embodiment of the present invention, an optical circuit (200) comprises a first optical coupler (204A) having at least two outputs, and a second optical coupler (204B) coupled to at least one of the outputs of the first optical coupler (204A), and wherein the ratio of an intensity of light reflected from the first optical coupler (204A) to an intensity of light inputted to the first optical coupler is smaller than the ratio of an intensity of light reflected from the second optical coupler (204B) to an intensity of light inputted to the second optical coupler.
Abstract:
A semiconductor device is provided with an insulating layer formed on a base substrate, an optical waveguide composed of a semiconductor layer formed on the insulating layer, and an insulating film formed along an upper surface of the insulating layer and a front surface of the optical waveguide. A peripheral edge portion of a lower surface of the optical waveguide is separated from the insulating layer, and the insulating film is buried between the peripheral edge portion and the insulating layer.
Abstract:
A photoelectric hybrid device includes an optical connector on a flat optical surface at one end of vertical optical waveguides for inputting and outputting an optical signal. Integration of the photoelectric hybrid device into an interposer or the like is standardized. The photoelectric hybrid device includes: conductive pins connected to an electric signal pathway for a photoelectric hybrid substrate; a translucent member having a flat optical surface and a translucent part; and self-organizing optical waveguides that form an optical path between the translucent part and an optical waveguide. The flat optical surface is not lower than the tops of the electrical connection parts on the conductive pins. Collision of the optical connector and the tops of the electrical connection parts can be avoided when an optical connector on which an optical waveguide that transmits an optical signal among the optical waveguides.
Abstract:
An optical device includes an optical waveguide provided on a principal surface of a substrate. The optical waveguide includes a core and a cladding provided around the core. The cladding is configured by a substance having a refractive index smaller than 71.4% of the refractive index of the core. The core has constituent atoms substantially forming a diamond lattice structure. The optical waveguide has a light input/output part through which a light beam is input and/or output. The light input/output part decreases stepwise in thickness towards an output end while tapering down in its width. The core is provided in the light input/output part to have a (111) plane or an equivalent plane to the (111) plane exposed on a face of a riser of the stepwise thickness of the light input/output part.
Abstract:
A modulated light source includes an FP laser that emits light in a plurality of Fabry-Perot (FP) modes, a band-pass filter whose center wavelength can be modulated, a light reflector that selectively feeds only light having passed through the modulation filter back to the FP laser, and a wavelength adjustment mechanism that adjusts the center wavelength so as to coincide with one of the predetermined FP mode when the light fed back to the FP laser is used as seed light for stimulated emission of radiation to cause selective light emission at an oscillation wavelength.
Abstract:
An optical resonator apparatus includes an optical resonator unit wherein ring optical resonators each including a first optical waveguide and a resonance wavelength adjustment electrode are coupled in cascade connection and round-trip lengths of the ring optical waveguides are different from each other and vary in order from an input side to an output side, and a controller that adjusts a resonance wavelength of each ring optical resonator in order beginning with the ring optical resonator provided at the most input side so as to match with an input light wavelength and, when an inter-channel occurs, adjusts the resonance wavelength of the first ring optical resonator from the input side so as to match with a second-matching input light wavelength and adjusts the resonance wavelengths of the second and succeeding ring optical resonators from the input side so as to match with the first-matching input light wavelength.