Abstract:
A wafer polishing device with movable window can be used for in-situ monitoring of a wafer during CMP processing. During most of the CMP operation, the window remains below a polishing surface of a polishing device to protect the window from the deleterious effects of the polishing process. When the window moves into position between the wafer and a measurement sensor, the window is moved closer to the polishing surface. In this position, at least some polishing agent collected in the recess above the window is removed, and an in-situ measurement can be taken with reduced interference from the polishing agent. After the window is positioned away from the wafer and measurement sensor, the window moves farther away from the wafer and polishing surface. With such a movable window, the limitations of current polishing devices are overcome.
Abstract:
A method of fabricating a polishing layer of a polishing pad includes successively depositing a plurality of layers with a 3D printer, each layer of the plurality of polishing layers deposited by ejecting a pad material precursor from a nozzle and solidifying the pad material precursor to form a solidified pad material.
Abstract:
A polishing pad includes a guide plate having a plurality of holes therein and being affixed to a compressible under-layer; and a plurality of conducting polishing elements each affixed to the compressible under-layer and passing through a sealed contact with a proton exchange membrane and corresponding hole in the guide plate so as to be maintained in a substantially vertical orientation with respect to the compressible under-layer but being translatable in a vertical direction with respect to the guide plate. The polishing pad may also include a slurry distribution material fastened to the guide plate by an adhesive. Pad wear sensors may also be provided in the polishing pad.
Abstract:
A polishing pad includes polishing elements interdigitated with one another over a surface of the polishing pad. Each of the polishing elements is secured so as to restrict lateral movement thereof with respect to others of the polishing elements, but remains moveable in an axis normal to a polishing surface of the polishing elements. Different densities of the polishing elements may be positioned within different areas of the surface of the polishing pad.
Abstract:
A polishing pad including a path therethrough to transmit a signal for in situ monitoring of an endpoint in a polishing operation. In one embodiment, the polishing pad includes a polishing composition distribution layer on a first side of a guide plate and a support layer on an opposed second side of a guide plate. The guide plate retains a plurality of polishing elements that extend along a first direction substantially normal to a plane including the polishing pad and through the polishing composition distribution layer. The polishing pad includes an optical path along the first direction and through a thickness of the pad.
Abstract:
A polishing pad conditioning apparatus includes a laser beam generating unit along with a system to transmit or focus the beam. The unit is mounted on a conditioning arm, such that the laser beam may be directed perpendicular to the plane of the polishing pad, which is next to the polishing platen. The conditioning arm is capable of moving across the polishing table to scan the pad radius, allowing the laser to traverse the pad radius.
Abstract:
A polishing pad has one or more polishing elements made from a hydrogel material having an intrinsic ability to absorb water. The hydrogel material may or may not have micropores, but has a water absorption capability of 4%-60% by weight, a wet tensile strength greater than 1000 psi, a flexural modulus greater than 2000 psi, and a wet Shore D hardness between 25-80, inclusive. The hydrogel material may be made from one or a combination of the following moieties: urethane, alkylene oxides, esters, ethers, acrylic acids, acrylamides, amides, imides, vinylalcohols, vinylacetates, acrylates, methacrylates, sulfones, urethanes, vinylchlorides, etheretherketones, and/or carbonates.
Abstract:
A polishing pad includes a guide plate, a porous slurry distribution layer and a flexible under-layer. Polishing elements are interdigitated with one another through the slurry distribution layer and the guide plate. The polishing elements may be affixed to the compressible under-layer and pass through corresponding holes in the guide plate so as to be maintained in a substantially vertical orientation with respect to the compressible under-layer but be translatable in a vertical direction with respect to the guide plate. Optionally, a membrane may be positioned between the guide plate and the slurry distribution layer. The polishing pad may also include wear sensors to assist in determinations of pad wear and end-of-life.
Abstract:
A polishing pad has polishing elements of at least two different types of materials, each having a different coefficient of friction, and arranged over a surface of the pad so as to provide a non-planar material removal profile for the pad. The polishing elements may be arranged to provide different material removal profiles, such as an edge-fast, edge-slow, center-fast or center-slow material removal profile.
Abstract:
The carrier head has a base and a substrate backing structure for holding a substrate against a polishing surface during polishing. The substrate backing structure is connected to the base and includes an external surface that contacts a backside of the substrate during polishing. The substrate backing structure also includes a resistive heating system to distribute heat over an area of the external surface and at least one thermally conductive membrane. The external surface is a first surface of the at least one thermally conductive membrane, and the resistive heating system is integrated within one of the at least one thermally conductive membrane.