Abstract:
A process for prereforming natural gas containing higher hydrocarbons and methane, includes providing a reactor having a nickel catalyst; providing steam, hydrogen, and natural gas containing higher hydrocarbons and methane to the reactor; adding an oxidant to the feedstock, wherein the oxidant provides oxygen in an amount less than the amount required to partially oxidize all higher hydrocarbons to a mixture of carbon monoxide and hydrogen; reacting the oxidant with higher hydrocarbons; and forming a gaseous mixture containing methane, carbon monoxide, carbon dioxide, steam and hydrogen substantially free of higher hydrocarbons and oxygen. The gaseous mixture can be reformed. An apparatus for performing the process includes a reactor; a feedstock source containing steam, hydrogen, and natural gas comprising higher hydrocarbons and methane; an oxidant source; valves and pipes connecting the natural gas source, the oxidant source and the reactor; and a nickel-containing catalyst within the reactor.
Abstract:
According to the present invention, hydrogen/carbon monoxide synthesis gas (also called syngas) is produced by injection of a second reactant stream into a hydrocarbon reformer at a location between the entry and discharge ends of the reformer. The second reactant stream can contain: carbon dioxide; a mixture of carbon dioxide and hydrocarbon; a mixture of hydrocarbon and steam, a mixture of carbon dioxide and steam; or a mixture of carbon dioxide with hydrocarbon and steam. All or part of the mixtures containing hydrocarbon and steam can be prereformed hydrocarbon in steam.
Abstract:
A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.
Abstract:
Synthesis gas is produced from a methane-containing reactant gas in a mixed conducting membrane reactor in which the reactor is operated to maintain the product gas outlet temperature above the reactant gas feed temperature wherein the total gas pressure on the oxidant side of the membrane is less than the total gas pressure on the reactant side of the membrane. Preferably, the reactant gas feed temperature is below a maximum threshold temperature of about 1400.degree. F. (760.degree. C.), and typically is between about 950.degree. F. (510.degree. C.) and about 1400.degree. F. (760.degree. C.). The maximum temperature on the reactant side of the membrane reactor is greater than about 1500.degree. F. (815.degree. C.).