Abstract:
Hydrocarbon feedstocks are converted into synthesis gas in a two-stage process comprising an initial steam reforming step followed by final conversion to synthesis gas in a mixed conducting membrane reactor. The steam reforming step converts a portion of the methane into synthesis gas and converts essentially all of the hydrocarbons heavier than methane into methane, hydrogen, and carbon oxides. The steam reforming step produces an intermediate feed stream containing methane, hydrogen, carbon oxides, and steam which can be processed without operating problems in a mixed conducting membrane reactor. The steam reforming and mixed conducting membrane reactors can be heat-integrated for maximum operating efficiency and produce synthesis gas with compositions suitable for a variety of final products. Synthesis gas produced by the methods of the invention is further reacted to yield liquid hydrocarbon or oxygenated organic liquid products.
Abstract:
Synthesis gas is produced from a methane-containing reactant gas in a mixed conducting membrane reactor in which the reactor is operated to maintain the product gas outlet temperature above the reactant gas feed temperature wherein the total gas pressure on the oxidant side of the membrane is less than the total gas pressure on the reactant side of the membrane. Preferably, the reactant gas feed temperature is below a maximum threshold temperature of about 1400° F. (760° C.), and typically is between about 950° F. (510° C.) and about 1400° F. (760° C.). The maximum temperature on the reactant side of the membrane reactor is greater than about 1500° F. (815° C.).
Abstract:
Hydrocarbon feedstocks are converted into synthesis gas in a two-stage process comprising an initial steam reforming step followed by final conversion to synthesis gas in a mixed conducting membrane reactor. The steam reforming step converts a portion of the methane into synthesis gas and converts essentially all of the hydrocarbons heavier than methane into methane, hydrogen, and carbon oxides. The steam reforming step produces an intermediate feed stream containing methane, hydrogen, carbon oxides, and steam which can be processed without operating problems in a mixed conducting membrane reactor. The steam reforming and mixed conducting membrane reactors can be heat-integrated for maximum operating efficiency and produce synthesis gas with compositions suitable for a variety of final products.
Abstract:
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
Abstract:
Synthesis gas is produced from a methane-containing reactant gas in a mixed conducting membrane reactor in which the reactor is operated to maintain the product gas outlet temperature above the reactant gas feed temperature wherein the total gas pressure on the oxidant side of the membrane is less than the total gas pressure on the reactant side of the membrane. Preferably, the reactant gas feed temperature is below a maximum threshold temperature of about 1400.degree. F. (760.degree. C.), and typically is between about 950.degree. F. (510.degree. C.) and about 1400.degree. F. (760.degree. C.). The maximum temperature on the reactant side of the membrane reactor is greater than about 1500.degree. F. (815.degree. C.).
Abstract:
A process for producing a hydrogen-containing product gas by catalytic steam-hydrocarbon reforming with an overall steam-to-carbon molar ratio between 1.5 and 2.4 for the process. The process stream is reacted in at least two prereformers prior to reaction in catalyst-containing tubes in a top-fired reformer furnace. The process stream is reacted adiabatically in the first prereformer, while the process stream is heated prior to being introduced into the second prereformer and/or the second prereformer is heated. The process avoids carbon formation on the catalyst in the catalyst-containing tubes in the primary reformer.
Abstract:
Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
Abstract:
The present invention relates to a process for producing a hydrogen-containing gas. The process comprises introducing a regeneration gas into a hydrogen reaction vessel containing solid packing material thereby at least partially regenerating the solid packing material and forming an effluent gas from the regeneration gas. At least a portion of the effluent gas is introduced into another hydrogen reaction vessel containing solid packing material. The effluent gas may be used, for example, to purge the other hydrogen reaction vessel and/or regenerate the solid packing material in the other hydrogen reaction vessel. Solid packing materials may include at least one of a complex metal oxide, a steam hydrocarbon reforming catalyst, an oxygen ion conducting ceramic, a hydrocarbon partial oxidation catalyst, and a hydrocarbon cracking catalyst.
Abstract:
A process for adiabatically prereforming a feedstock, includes: providing an adiabatic reactor; providing a catalyst containing 1-20 wt. % nickel and 0.4-5 wt. % potassium, wherein the catalyst has an overall catalyst porosity of 25-50% with 20-80% of the overall catalyst porosity contributed by pores having pore diameters of at least 500 Å; providing the feedstock containing natural gas and steam, wherein the natural gas contains an initial concentration of higher hydrocarbons, and a ratio of steam to natural gas in the feedstock is from 1.5:1 to 5:1; preheating the feedstock to a temperature of 300-700° C. to provide a heated feedstock; providing the heated feedstock to the reactor; and producing a product containing hydrogen, carbon monoxide, carbon dioxide, unreacted methane, and steam, wherein said product contains a reduced concentration of higher hydrocarbons less than the initial concentration of higher hydrocarbons, to prereform the feedstock.
Abstract:
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.