Abstract:
Production of polycrystalline silicon in substantially closed-loop processes and systems is disclosed. The processes and systems generally involve disproportionation of trichlorosilane to produce silane or dichlorosilane and thermal decomposition of silane or dichlorosilane to produce polycrystalline silicon.
Abstract:
Methods for separating halosilanes that involve use of a distillation column having a partition that divides the column into portions for producing three product fractions are disclosed. Methods and systems for producing silane by disproportionation of halosilanes that use such columns and methods for producing polycrystalline silicon are also disclosed.
Abstract:
Clamping assemblies for securing a solar module to a structure include a base, a bracket, and a fastener. The base may be attached to a multi-planar roof of the structure. The base and the bracket together define a mounting region for receiving a portion of the solar module. The fastener connects the base and the clamp and can selectively apply a clamping force to the portion of the solar module.
Abstract:
A system for growing silicon crystal structures includes a housing defining a growth chamber and a feed system connected to the housing for delivering silicon particles to the growth chamber. The feed system includes a container for holding the silicon particles. The container includes an outlet for discharging the silicon particles. The feed system also includes a channel connected to the outlet such that silicon particles discharged from the container flow through the channel. The feed system further includes a separation valve connected to the channel and to the housing. The separation valve is configured such that a portion of the feed system rotates relative to the housing.
Abstract:
Heat exchange apparatus and, particularly, heat exchangers having a baffled cooling jacket are disclosed. Methods for using the exchangers including methods that involve cooling an effluent gas produced from a fluidized bed reactor for producing polycrystalline silicon are also disclosed.
Abstract:
A method for designing a diamond coated wire for use in a wafer slicing system includes adjusting an initial diamond size distribution until an intermediate diamond size distribution is generated, wherein the intermediate diamond size distribution has a corresponding simulated penetration thickness value less than or equal a predetermined penetration thickness value, and wherein penetration thickness is a parameter proportional to a depth of subsurface damage that would occur when slicing an ingot using a diamond coated wire having an associated diamond size distribution. The method may include adjusting the intermediate diamond size distribution until a final diamond size distribution is generated, wherein the final diamond size distribution has a maximum diamond grit size that is substantially equal to a predetermined maximum diamond grit size, and manufacturing the diamond coated wire such that the diamond coated wire has a plurality of diamond grits that fit the final diamond size distribution.
Abstract:
Methods for separating halosilanes that involve use of a distillation column having a partition that divides the column into portions for producing three product fractions are disclosed. Methods and systems for producing silane by disproportionation of halosilanes that use such columns and methods for producing polycrystalline silicon are also disclosed.
Abstract:
A system for growing a crystal ingot from a melt is provided. The system includes a crucible assembly, a first heater, a second heater, and a passive heater. The crucible assembly includes a crucible and a weir separating an outer melt zone of the melt from an inner melt zone of the melt. The first heater is configured to supply thermal energy to the melt by conduction through the crucible. The second heater is configured to generate thermal radiation. The passive heater is configured to supply thermal energy to the outer melt zone by transferring thermal radiation generated by the second heater to the outer melt zone.
Abstract:
A method of improving the operation of polysilicon fluidized bed reactors is disclosed. The present disclosure is directed to the optimization of axial temperature gradients in gas-solid fluidized bed systems. Varying the width of the particle size distribution in the reactor alters the temperature gradient within the reactor, thereby providing a means of a better control of internal temperature profiles and hence better reactor performance.