Abstract:
A control device for an internal combustion engine according to the present embodiment, includes: cooling units 40L and 40R arranged on a path where a coolant is circulated, and cooling an exhaust gas of the internal combustion engine with the coolant flowing through the cooling units 40L and 40R; and ECUs 7L and 7R estimating a heat quantity of the exhaust gas, and deciding whether or not to prohibit an idle reduction control in response to the estimated heat quantity of the exhaust gas.
Abstract:
A control apparatus and control method is provided for an internal combustion engine that includes a vaporized fuel tank in which vaporized fuel is stored, and a normally-closed vaporized fuel supply valve that opens and closes a connecting portion between the vaporized fuel tank and a surge tank. This apparatus and method produce vaporized fuel by injecting fuel into the tank while the vaporized fuel supply valve is closed while the engine is operating, then open the vaporized fuel supply valve at engine startup and supply the vaporized fuel stored in the tank to the surge tank. If there is no vaporized fuel remaining in the vaporized fuel tank when the engine stops, vacuum is generated in the vaporized fuel tank by temporarily opening the vaporized fuel supply valve before the engine stops. Vaporized fuel is then produced by injecting fuel into the vaporized fuel tank in this vacuum state.
Abstract:
A control apparatus for an internal combustion engine includes a fuel tank; a vaporized fuel tank that is connected to an intake passage; an in-tank fuel supplying portion that supplies fuel in the fuel tank to the vaporized fuel tank; a vaporized fuel supply valve that opens and closes a connecting portion between the vaporized fuel tank and the intake passage; an air introduction valve provided in the vaporized fuel tank; a throttle valve; a vaporized fuel producing portion that produces vaporized fuel in the vaporized fuel tank; a vaporized fuel supplying portion that supplies vaporized fuel stored in the vaporized fuel tank; and a supply amount controlling portion that controls a supply amount of vaporized fuel according to an opening amount of the throttle valve by driving the throttle valve when supplying vaporized fuel.
Abstract:
When an automobile is traveling on a road surface with a low friction coefficient upon a shift of an engine to idle operation in the process of stopping the automobile from traveling, a target engine speed of the engine is reduced by a value equivalent to a reduction in a drive request value for any auxiliary at a time point corresponding to start of reduction of the drive request value.
Abstract:
A cylinder air filling amount is divided into a first amount of air and a second amount of air, the first amount of air and the second amount of air are calculated, and the first amount of air and the second amount of air are totaled to calculate a cylinder air filling amount. The first amount of air is the excess of the cylinder air filling amount with respect to the throttle valve air passage amount occurring due to an intake stroke being performed. The drop in intake pressure occurring due to an intake stroke being performed is detected for each cylinder and the total value of the intake pressure drop in a 720° crank angle range is calculated. The first amount of air is calculated based on an intake pressure drop and the intake pressure drop total value. Due to this, it is possible to simply and accurately calculate a cylinder air filling amount.
Abstract:
A control device of a multicylinder internal combustion engine provided with a valve operating characteristic control means for controlling a valve operating characteristic of at least one of an intake valve and exhaust valve, which estimates an intake difference of cylinders and limits a control range of said valve operating characteristic in accordance with said estimated intake difference.