Abstract:
Protecting a FET from plasma damage during FEOL processing by forming a FET-like structure in conjunction with and adjacent to an FET, in a same well as the FET, but having a body doped opposite to the well polarity. The FET-like structure is formed with thinner oxide than the gate oxide of the FET, has a gate structure (poly) connected with the gate of the FET, and may be shorted out by the first metal layer (M1).
Abstract:
A process is provided for determining the effects of scattering from the edge of a resist during a doping process. Edges of a resist which has been patterned to create an n-well are simulated and individually stepped across a predetermined region in predetermined step sizes. The step sizes may vary from step to step after each step, the scattering effects due to the resist edge at its particular location is determined. A resist of virtually any shape may be divided into its component edges and each edge may be individually stepped during the process.
Abstract:
A first semiconductor region and a second semiconductor region separated by a shallow trench isolation region are formed in a semiconductor substrate. A photoresist is applied and patterned so that the first semiconductor region is exposed, while the second semiconductor region is covered. Depending on the setting of parameters for the location of an edge of the patterned photoresist, the slope of sidewalls of the photoresist, the thickness of the photoresist, and the direction of ion implantation, ions may, or may not, be implanted into the entirety of the surface portion of the first semiconductor region by shading or non-shading of the first semiconductor region. The semiconductor substrate may further comprise a third semiconductor region into which the dopants are implanted irrespective of the shading or non-shading of the first semiconductor region. The selection of shading or non-shading may be changed from substrate to substrate in manufacturing.
Abstract:
A chip can include a CMOS structure having a bulk device disposed in a first region of a semiconductor substrate in conductive communication with an underlying bulk region of the substrate, the first region and the bulk region having a first crystal orientation. An SOI device is disposed in a semiconductor-on-insulator (“SOI”) layer separated from the bulk region of the substrate by a buried dielectric layer, the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor (“PFET”) and the SOI device includes an n-type field effect transistor (“NFET”) device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor in conductive communication with a gate conductor of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region. The diodes are operable to conduct a discharge current to the bulk region when either a voltage on the gate conductor or a voltage on the source or drain region of the SOI device exceeds a diode's breakdown voltage.
Abstract:
A method for preventing charging damage during manufacturing of an integrated circuit design, having silicon over insulator (SOI) transistors. The method prevents damage from charging during processing to the gate of IC devices by assigning regions to the IC design such that the devices located within the regions have electrically independent nets, identifying devices that may have a voltage differential between the source or drain, and gate as susceptible devices within a given region, and connecting a element across the respective source or drain, and the gate of each of the susceptible devices such that the element is positioned within the region. The method includes connecting compensating conductors to an element to eliminate potential charging damage.
Abstract:
A circuit having a precision passive circuit element, such as a resistor or a capacitor, with a target value of an electrical parameter is fabricated on a substrate with a plurality of independent parallel-connected passive circuit elements. The plurality of passive circuit elements are designed to have a plurality of values of the electrical parameter which are spaced or offset at or around the target value of the electrical parameter, such as three circuit elements with one having a value at the target value, one having a value above the target value, and one having a value below the target value. Each passive circuit element also has a fuse in series therewith. A reference calibration structure is also fabricated, which can be a passive circuit element having the target value of the electrical parameter, in a reference area of the substrate under the same conditions and at the same time as fabrication of the plurality of passive circuit elements. The actual component value of the reference calibration structure is then measured, and based upon the measurement a single precision passive element of the plurality of parallel passive circuit elements is selected by blowing the fuses of, and thus deselecting, the other independent parallel connected passive circuit elements.
Abstract:
Disclosed is a protection circuit for an integrated circuit device, wherein said protection circuit comprises: a first element connected to a gate of a first FET device; and a second element connected to a gate of a second FET device, wherein a drain/source of the first FET device and a drain/source of the second FET device are connected to a higher level connector and wherein the higher level connector eliminates a damaging current path between the first element and the second element.
Abstract:
A semiconductor device and a method of fabricating the semiconductor device, the semiconductor device including: one or more FETs of a first polarity and one or more FETs of a second and opposite polarity, at least one of the one or more FETs of the first polarity having a gate dielectric having a thickness different from a thickness of a gate dielectric of at least one of the one or more FETs of the second polarity.
Abstract:
A selectively silicided semiconductor structure and a method for fabricating same is disclosed herein. The semiconductor structure has suicide present on the polysilicon line between the N+ diffusion or N+ active area and the P+ diffusion or active area at the N+/P+ junction of the polysilicon line, and silicide is not present on the N+ active area and the P+ active area. The presence of this selective silicidation creates a beneficial low-resistance connection between the N+ region of the polysilicon line and the P+ region of the polysilicon line. The absence of silicidation on the N+ and P+ active areas, specifically on the PFET and NFET structures, prevents current leakage associated with the silicidation of devices.
Abstract:
A method and structure for preventing device leakage. The method and structure includes forming a blocking layer of preferably nitride over a junction between a source/drain region and a shallow trench isolation. A silicide is then formed over a landed area of the source/drain region but is blocked by the blocking layer from forming over the junction between the source/drain region and the shallow trench isolation. This prevents device leakage at this location.