Abstract:
A method is provided for acquiring MR image data pertaining to a coronary artery which is in motion between end-diastolic and end-systolic maximum excursion positions, respectively, during a cardiac cycle. The method comprises the step of tracking the location of the artery during the cardiac cycle as the artery moves between the positions of maximum excursion. The method further comprises acquiring MR data at a number of locations during the cardiac cycle in a region lying between the maximum excursion positions, each having the excitation or acquisition scan locations adjusted during the MR scan so as to substantially coincide with the location of said artery at the time of data acquisition.
Abstract:
Exemplary embodiments are directed to acquiring multiple sets of positron emission tomography (PET) data for different areas of a subject concurrently with acquiring portions of a single magnetic resonance field of view. Positron emission tomography (PET) images and magnetic resonance (MR) images can be acquired using a combined PET-MRI scanner, wherein, for example, a first portion of MR data from a MR field of view can be acquired concurrently with a first acquisition of PET data, a position of the MR field of view can be adjusted in response to a change in a location of a bed in the combined PET-MRI scanner, and a second portion of MR data from the MR field of view can be acquired concurrently with a second acquisition of PET data.
Abstract:
A network switch apparatus includes a first network port, a second network port, a first inline port, a second inline port, wherein the first and second inline ports are for communication with a pass-through device, a packet switch, and a by-pass device configured to operate in a first mode of operation, wherein in the first mode of operation, the by-pass device is configured to pass a first packet received at the first network port to the packet switch. The by-pass device is configured to switch from the first mode of operation to a second mode of operation upon an occurrence of a condition, and wherein in the second mode of operation, the by-pass device is configured to transmit a second packet received at the first network port to the second network port without passing the second packet to the packet switch.
Abstract:
Exemplary embodiments of the present disclosure are directed to correcting lung density variations in positron emission tomography (PET) images of a subject using a magnetic resonance (MR) image. A pulmonary vasculature and an outer extent of a lung cavity can be identified in a MR image corresponding to a thoracic region of the subject in response to an intensity associated with pixels in the MR image. The pixels within the outer extent of the lung cavity are classified as corresponding to the pulmonary vasculature or the lung tissue. Exemplary embodiments of the present disclosure can apply attenuation coefficients to a reconstruction of the PET image based on the classification of the pixels within the outer extent of the lung cavity.
Abstract:
An imaging system is presented. The imaging system includes a cradle, and a first sheet of coils disposed inside of the cradle such that a first end of the first sheet of coils protrudes out of the cradle and a second end of the first sheet of coils is coupled to a structure, wherein a requisite expanse of the first sheet of coils is flexibly pulled out from the cradle by pulling the first end.
Abstract:
A network switch apparatus includes a housing, a first network port, a second network port, a first instrument port, an active component inside the housing, wherein the active component is configured to receive packets from the first network port, and pass at least some of the packets from the first network port to the first instrument port, a connector for supplying power from a power supply to the active component, and a backup power supply for supplying power to the active component when the active component does not receive power from the power supply.
Abstract:
This invention provides compositions that have a light emitting reporter linked to biomolecules, preferably, nucleotide oligomers. The light reporter particles are silylated and functionalized to produce a coated light reporter particle, prior to covalently linking the biomolecules to the light reporter particle. The light reporter particles of the invention can be excited by a light excitation source such as UV or IR light, and when the biomolecule is DNA, the attached DNA molecule(s) are detectable by amplification techniques such as PCR.
Abstract:
A system including a plurality of coil elements is provided. Each coil element is arranged with a first switch and a second switch. In a first mode, the first switch and the second switch are turned off to split each coil element into a first coil portion and a second coil portion, to transmit first radio frequency signals. In a second mode, the first switch and second switch are turned on to transform each coil element into a loop coil to simultaneously transmit or receive multiple second radio frequency signals.
Abstract:
A method and apparatus for generating a localized heating are provided, the method comprising: transmitting a spatially localized or shaped electromagnetic field via a plurality of coils to a subject and generating magnetic resonance signals; performing magnetic resonance imaging based on the magnetic resonance signals to generate an image of a region of interest of the subject; and controlling the plurality of the same imaging coils to radiate radio frequency (rf) energy to generate the localized heating on a region of interest. The invention provide a more efficient manner for generating localized heating and means for verifying the heating pattern without the need to measure temperature rises in the patient. This is useful to check the localization prior to the application of hyperthermia.
Abstract:
An apparatus for containing one or more edible items includes a container having a base and a wall, a first thermal element, and a securing mechanism for removably securing the first thermal element relative to the container, wherein the first thermal element comprises a housing that contains a phase-change material. An apparatus for containing one or more edible items includes a container having a base and a wall, a thermal element having a housing that contains a phase-change material, wherein the thermal element is selectively placeable at a first position and a second position, a first securing mechanism for removably securing the thermal element relative to the container when the thermal element is at the first position, and a second securing mechanism for removably securing the thermal element relative to the container when the thermal element is at the second position.