摘要:
Provided is an exposure apparatus that is able to prevent liquid from remaining on a measuring part. An exposure apparatus comprises a measuring system (60), which has a first pattern (61) formed on the upper surface of a substrate stage, and a second area (S2) specified on the upper surface in the vicinity of a first area (S1), which includes the first pattern (61), and a second pattern (80) is formed in the second area (S2) so that the liquid (LQ) that has remained so as to span the first area (S1) and the second area (S2) retreats from the first area (S1) and collects in the second area (S2).
摘要:
A main controller moves a reticle stage in a scanning direction, illuminates an area on a reticle including a mark area in which predetermined marks are formed with illumination light, forms an aerial image of at least one mark existing in the mark area via a projection optical system, and measures the aerial image using an aerial image measuring unit. The main controller repeatedly performs such aerial image measurement while moving the reticle stage in the scanning direction. Then, the main controller computes a scanning image plane on which an image of a pattern formed on a reticle is formed by the projection optical system, based on the measurement result of the aerial image of each mark at each movement position. Based on the computation result, the main controller performs focus leveling control of a wafer during scanning exposure. Thus, highly accurate exposure is realized without using a sensor for reticle (mask) position measurement.
摘要:
A liquid immersion region (LR) is formed on a measuring member (65) by use of the liquid immersion mechanism (1), and measurement is performed by receiving measurement light through liquid (LQ) which forms the liquid immersion region (LR), in order to determine an exposure condition of a substrate (P). The substrate (P) is exposed by taking into account a difference between a pressure of the liquid (LQ) in the process of measurement and that in the process of exposure and a result of the measurement thus performed.
摘要:
There is disclosed a wafer flatness evaluation method includes measuring front and rear surface shapes of a wafer. The wafer front surface measured is divided into sites. Then, a flatness calculating method is selected according to a position of the site to be evaluated and flatness in the wafer surface is acquired.
摘要:
Light is irradiated on a light-shielding pattern on an object surface side of a projection optical system and light intensity distribution of the light having passed through the projection optical system and slits is detected while slits of an aerial image measuring unit on the image plane side of the projection optical system are moved within a plane perpendicular to the optical axis of the projection optical system. The information concerning the flare of the projection optical system is computed from the light intensity distribution, so that the influence of resist coated on a wafer used in a conventional exposing method can be eliminated, and highly accurate measurement of information concerning the flare can be realized. Further, measurement of information concerning the flare can be performed in a short time comparing to the exposing method because development process or the like of the wafer is not necessary.
摘要:
A part of exposure beam through a liquid via a projection optical system enters a light-transmitting section, enters an optical member without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
摘要:
A photomask blank substrate is selected for use in a process where at least a masking film or a phase shift film is deposited on a top surface of a photomask blank substrate to form a photomask blank, the deposited film is patterned to form a photomask, and the photomask is mounted in an exposure tool. The substrate is selected by simulating a change in shape in the top surface of the substrate, from prior to film deposition thereon to when the photomask is mounted in the exposure tool; determining the shape of the substrate top surface prior to the change that will impart to the top surface a flat shape when the photomask is mounted in the exposure tool; and selecting, as an acceptable substrate, a substrate having this top surface shape. The selected substrate has an optimized top surface shape that improves productivity in photomask fabrication.
摘要:
In the case the first selection criteria is set, a plurality of detection points are selected to control the pitching and rolling of the wafer, whereas in the case the second selection criteria is set, priority is put to control the rolling on the wafer. The exposure apparatus has a selection unit to choose between these criteria, and on scanning exposure the controller adjusts the wafer position in the optical axis direction, pitching, rolling or the wafer position in the optical axis direction and rolling according to the selection criteria. Accordingly, by precisely adjusting the wafer surface position in the optical axis direction and rolling that greatly affects defocus, the critical dimension variation by a macroscopic observation, which is caused by defocus, can be prevented. Moreover, by performing an alternate scanning on the entire shot area including shot areas to be exposed on the circumferential portion, throughput can be maintained extremely high.
摘要:
An optical detection system capable of detecting even small particles or defects on a specimen such as a mask with high sensitivity and being unaffected by diffracted light from the edges of the pattern even when inspecting a thick specimen. The optical detection system includes a light emission means for illuminating a pattern surface on the specimen with light, a first light reception optical system placed on the pattern surface side of the specimen for receiving scattered light emanating from the pattern surface, a second light reception optical system placed on the glass side of the specimen in symmetry with the first light reception optical system relative to the pattern surface for receiving scattered light emanating from the pattern surface through the specimen and a corrective optical element for correcting for differences in the aberration states of the first and second light reception optical systems.
摘要:
A defect inspecting apparatus and a defect inspecting method are provided to conduct discriminating detection of minute circuit patterns and foreign particles as well as to detect defectives on the surface of a substrate with a high precision. The beams from a laser light source are converged by a lens to be incident upon an inspecting point. The light emitted from the inspecting point by the incident beam is detected by a photoreceiver. On the light receiving surface of the photoreceiver, a plurality of light receiving areas are provided. Each of the light receiving areas has longitudinal direction and shorter direction on its positively projected view. The arrangement of the light receiving areas is selected in accordance with the arrangement information of the patterns formed on the substrate. The foreign particles and the patterns are distinguished by obtaining the logical product of the output signals from the selected light receiving area.