Abstract:
The invention relates to a system (2) for producing an optical mask (35) for surface microtexturing, said system (2) comprising: a substrate (10) having a surface (11) that is to be textured; a layer of material (20) which covers the surface (11) of the substrate (10) and has an outer surface (21) that is exposed to the outside environment; and a generating and depositing device for generating and depositing droplets (30) on the outer surface (21) of the layer of material (20), in a specific arrangement (31) under condensation, forming the optical mask (35) on the outer surface (21) of the layer of material (20). The invention also relates to a treatment plant comprising a system (2) of said type. The invention further relates to a method for producing a mask as well as to a surface microtexturing method.
Abstract:
A device for medical imaging by X-ray is provided. More specifically, it relates to the simulation of the deployment of an endoprosthesis in order to assist the surgeon in an endovascular surgical procedure. The invention makes use of a single 2D image in order to determine certain characteristics of a simplified model of the endoprosthesis: 2D positions, and deployment value of the stents; to determine the inherent rotation of at least one stent; then to determine the deployment of a model representing the structure of the stents, initialized on the basis of the preceding steps, in a 3D model of a vascular structure.
Abstract:
The invention relates to a system (2) for producing an optical mask (35) for surface treatment, in particular surface microtexturing, said system (2) comprising: a layer of material (20) which has an outer surface (21) that is exposed to the outside environment; and a generating and depositing device for generating and depositing droplets (30) on the outer surface (21) of the layer of material (20) in which a specific arrangement (31), forming the optical mask (35) on the outer surface (21) of the layer of material (20). The invention also relates to a treatment plant comprising a system (2) of said type. The invention further relates to a method for producing a mask as well as to a method for surface treatment.
Abstract:
The invention relates to a process for producing aromatic polyimides, comprising the following steps: (a) preparation of one or more solid salt(s) by reacting one or more aromatic tetracarboxylic acid(s) and one or more diamine(s) according to a mole ratio ranging from 0.95 to 1.05; (b) drying of the solid salt(s), (c) addition, to the dry salt resulting from step (b), of one or more compound(s) (C) comprising one or more group(s) chosen from a carboxylic acid group, an anhydride group, an ester group and an acyl chloride group; (d) solid-state polymerization of said solid salt(s) in the presence of the compound(s) (C).
Abstract:
The present invention concerns an organopolysiloxane (A) able to be obtained by the reaction, at a temperature of between 10° C. and 75° C., between—at least one compound (C) chosen from the organic compounds comprising at least one alkene or alkyne functional group, at least one of the substituents of which is an acid functional group and the organic compounds comprising at least one acid functional group and at least one alkene or alkyne functional group, at least one of the substituents of which is an electron-withdrawing group; and—at least one organopolysiloxane (B) chosen from the organopolysiloxanes comprising siloxyl units (I.1) and (I.2) of the following formulae: (I) The present invention also concerns compositions comprising said organopolysiloxanes (A) and the uses thereof. ( I ) Y a Z b 1 SiO 4 - ( a + b ) 2 ; ( I .1 ) Z c 2 SiO 4 - c 2 ( I .2 )
Abstract:
The invention relates to a device (1) for cutting human or animal tissue, such as a cornea (3), or a crystalline lens, said device comprising a femtosecond laser (2) that can emit a L.A.S.E.R. beam (4) in the form of impulses, and means for directing and focusing said beam onto or into the tissue for the cutting thereof as such. According to the invention, the device comprises means (9) for shaping the L.A.S.E.R. beam (4), which are positioned in the trajectory of said beam, and can modulate the energy distribution of the L.A.S.E.R. beam (4) in the focal plane thereof, corresponding to the cutting plane.
Abstract:
A method for manufacturing a treated optical fiber for a temperature sensor is provided. The method includes a) obtaining an optical fiber from pure silica or doped by one or more elements from among fluorine and nitrogen, b) imprinting, using a femtosecond laser, at least one Bragg grating in the optical fiber to obtain an imprinted fibe, the Bragg grating extending longitudinally in a portion of the imprinted fiber and being suitable for reflecting light waves propagating along the imprinted optical fiber, the laser having a power greater than or equal to 450 mW, and c) annealing at least the imprinted fiber portion to obtain the treated optical fiber.
Abstract:
An integrated random signal generation circuit includes two logic gates, the output of each gate coupled to a respective first input of the other gate via assemblies of delay elements. The respective delays introduced by the assemblies of delay elements are adjustable.
Abstract:
A computer-implemented method for managing/monitoring production of agricultural raw materials useful for the production of alcoholic beverages, as well as the production, storage, ageing, consumption, quality, authenticity, traceability and/or selling price of alcoholic beverages comprises: (a) collecting two samples of the alcoholic beverage in an inert container sealed with an inert stopper; (b) assigning data on the alcoholic beverage to each sample; (c) storing at least some of the samples collected in step (a), under specified conditions; (d) analysing each sample to determine at least one mineral profile, preferably metallic; (e) forming a database relating to the samples and resulting from step (b) and step (d); (h) processing these data by statistical analysis, preferably using AI; and (i) using the processed data to manage/monitor the entire supply chain of the alcoholic beverage until its consumption. A device for implementing steps (a) and (c) of the method is also provided.
Abstract:
Embodiments of the disclosure relate to a composition including 70 to 95 parts by weight of an epoxide resin having a viscosity of between 1 and 150 kPa·s at a temperature of between 20° C. and 25° C., and 5 to 30 parts by weight, per 100 parts by weight of resin present in the composition, of a curing agent dispersed in the resin, the curing agent being an ionic liquid containing a phosphonium cation. The disclosure also relates to a semi-finished product or towpreg, including a bundle of fibres and a composition. The disclosure also relates to the use of a composition or of a semi-finished product according to the disclosure for the production of a hydrogen tank, in particular a type IV pressure tank, made of composite material, for the on-board storage of hydrogen gas.