Abstract:
Holographic reconstructing apparatus capable of exchanging a hologram memory plate and having a large memory capacity, wherein the position of the memory plate relative to an irradiating laser beam can be accurately controlled. A beam irradiated from a laser source is deflected by a light deflector and is selectively directed to a selected hologram to be read or directed intermittently to a region for dividing the laser beam into a plurality of laser beams. The intensity of each divided laser beam is detected by a light detector, and the detection signal is fed back to control the working point of the light deflector such that the center of the laser beam irradiates the center of the luminous laser beam dividing region. The working point is held until the light deflector again directs the laser beam to the dividing region so that the laser beam radiates a selected hologram on the hologram plate accurately.
Abstract:
This invention provides a method for forming a catalyst layer for carbon nanostructure growth, which can eliminate the influence of water in a liquid for catalyst layer formation, can grow homogeneous and highly oriented carbon nanostructures over the whole area of a substrate and can realize mass production of the carbon nanostructures, and a liquid for catalyst layer formation for use in the method, and a process for producing carbon nanostructures using the catalyst layer formed by the method. The catalyst layer for use in the production of CNTs is formed by preparing a catalyst metal salt solution of a catalyst metal-containing metal compound (a catalyst metal salt) dispersed or dissolved in a solvent having an ample wettability towards the substrate and coating the catalyst metal salt solution onto the substrate to a form a thin film. The thin film is then heat treated to form a catalyst layer. The substrate with the dried catalyst layer formed thereon is introduced into a carbon nanostructure synthetic device, and CNTs are grown by a thermal CVD method.
Abstract:
A reflection element determination device derives error factors in a first signal source and a second signal source based on measurement results of a signal in respective states in which reflection elements are respectively connected to the first signal source and the second signal source, and measurement results of a signal in a state in which the first signal source and the second signal source are connected with each other via a transmission element, derives transmission characteristics of the transmission element based on the measurement results of a signal in the state in which the first signal source and the second signal source are connected with each other via the transmission element and the derived error factors, and determines whether the reflection elements realize predetermined reflection states based on the derived transmission characteristics of the transmission element and transmission characteristics of the transmission element which have been known before the derivation, where the transmission characteristic of the transmission element in a direction from a first terminal to a second terminal, and the transmission characteristic of the transmission element in the opposite direction are equal to each other.
Abstract:
It is intended to highly efficiently produce a high-density brush shaped carbon nanostructure useful in the production of CNT assembly, such as rope-shaped CNTs, and provide a catalyst body for production of brush-shaped carbon nanostructure that enables the production. The catalyst body for production of brush-shaped carbon nanostructure is one comprising a substrate (32), an aggregation suppressive layer (34) superimposed on a surface thereof and a catalyst layer superimposed on the aggregation suppressive layer (34). The catalyst layer is a catalyst particle layer (44) consisting of metallic catalyst particles (42) composed mainly of a catalytic metal. The metallic catalyst particles (42) have an average particle diameter, D, satisfying the relationship 0.5 nm≦D≦80 nm, and individual particles of the metallic catalyst particles (42) have a diameter, d, falling within the range of the above average particle diameter (D). Further, there are disclosed a process for producing the catalyst body, a brush-shaped carbon nanostructure and a process for producing the same.
Abstract:
An error factor determination device includes an error factor recording unit which records error factors Eija in a signal generation system which includes a signal generation unit for generating a signal and an output terminal for outputting the signal, a reflection coefficient deriving unit which derives a reflection coefficient Xm of the output terminal based on measurement results R1 and R2 of the signal while the signal is being output from the output terminal and the error factors Eija recorded in the error factor recording unit, and a true/false determination unit which determines whether the recorded error factors Eija are true or false based on the derived reflection coefficient Xm, and a true value of the reflection coefficient.
Abstract:
Errors of a measuring system are corrected by acquiring the phases of transmission tracking errors. A network analyzer includes a measuring system error factor recording unit which records measuring system error factors generated independently of frequency conversion carried out by a DUT, and an error factor acquiring unit which measures first coefficients and second coefficients of a correction mixer where a signal output from a terminal is a sum of a product of a signal input to the terminal and the first coefficient, and a product of a signal input to the other terminal and the second coefficient, and the ratio of magnitudes of the second coefficients is constant, and acquires the transmission tracking errors caused by the frequency conversion based on the measuring system error factors recorded in the measuring system error factor recording unit, the first coefficients, and the second coefficients.
Abstract:
Provided is a composite material useful as a material for a thermal contact surface in a microprocessor which can express extremely high thermal diffusion property and extremely high conductivity, can express a sufficient adhesive strength in its surface, and is excellent in reworking property at the time of a bonding operation. The carbon nanotube aggregate of the present invention is a carbon nanotube aggregate where a plurality of carbon nanotubes each having a plurality of walls penetrate a resin layer in a thickness direction of the resin layer, in which both terminals of the carbon nanotube aggregate each have a shear adhesive strength for glass at 25° C. of 15 N/cm2 or more.
Abstract translation:本发明提供一种复合材料,其可用作微处理器中的热接触表面的材料,其能够表现出极高的热扩散性和极高的导电性,能够在其表面上表现出足够的粘合强度,并且在工作性能方面优异 接合操作。 本发明的碳纳米管集合体是碳纳米管集合体,其中,具有多个壁的多个碳纳米管沿着树脂层的厚度方向贯穿树脂层,其中碳纳米管集合体的两端均具有 25℃下玻璃的剪切粘合强度为15N / cm 2以上。
Abstract:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
Abstract:
A reflection element determination device derives error factors in a first signal source and a second signal source based on measurement results of a signal in respective states in which reflection elements are respectively connected to the first signal source and the second signal source, and measurement results of a signal in a state in which the first signal source and the second signal source are connected with each other via a transmission element, derives transmission characteristics of the transmission element based on the measurement results of a signal in the state in which the first signal source and the second signal source are connected with each other via the transmission element and the derived error factors, and determines whether the reflection elements realize predetermined reflection states based on the derived transmission characteristics of the transmission element and transmission characteristics of the transmission element which have been known before the derivation, where the transmission characteristic of the transmission element in a direction from a first terminal to a second terminal, and the transmission characteristic of the transmission element in the opposite direction are equal to each other.
Abstract:
An object is to provide a resin material having high strength and high vibration-damping property. A resin material includes a matrix resin and carbon nanocoils contained therein. The carbon nanocoils have electrical conductivity, so that the matrix resin containing them can easily convert a vibration energy generated in the resin material into heat and thereby damp the vibration energy in a short time. In addition, since the carbon nanocoil is in a coiled form, vibration-damping property can be enhanced in comparison with that of conductive materials such as carbon nanotube and graphite.