Abstract:
Exhaust gas sensors or air-fuel ratio sensors for generating outputs depending on the concentration of HC are disposed respectively upstream and downstream of an HC adsorbent in an exhaust passage. When an exhaust gas emitted from an internal combustion engine is supplied to the exhaust passage to allow the HC adsorbent to adsorb HC in the exhaust gas, an amount of HC adsorbed by the HC adsorbent per unit time is determined based on the difference between outputs from the exhaust gas sensors. A deteriorated state of the HC adsorbent is evaluated by comparing the determined adsorbed amount of HC and its integrated value with a threshold set depending on a temperature or the like of the HC adsorbent.
Abstract:
An object system is regarded as being equivalent to a system for generating an output of an O2 sensor or exhaust gas sensor from a target combined air-fuel ratio that is produced by combining target air-fuel ratios KCMD for respective cylinder groups according to a filtering process of the mixed model type. With the equivalent system as an object to be controlled, an air-fuel ratio processing controller determines a target combined air-fuel ratio, and determines a target air-fuel ratio KCMD for each of the cylinder groups from the target combined air-fuel ratio. The air-fuel ratios in the cylinder groups are manipulated into the target air-fuel ratio according to a feed-forward control process.
Abstract:
A control apparatus controls the rotational speed of an internal combustion engine by generating a command value for ignition timing of the internal combustion engine to convert an actual rotational speed of the internal combustion engine to a predetermined target rotational speed according to a feedback control process and controlling the ignition timing based on the generated command value. The feedback control process is carried out by a response designating control process capable of variably designating a rate of reduction of the difference between the actual rotational speed of the internal combustion engine and the target rotational speed with the value of a predetermined parameter in the feedback control process. The value of the predetermined parameter is variably established under a predetermined condition.
Abstract:
An object system for generating an output signal of an O2 sensor from a target air-fuel ratio is expressed as a model including a response delay element and a dead time element. Data of identified values of parameters of the model are sequentially generated by an identifier. Data of an estimated value of the output signal of the O2 sensor after a dead time of the object system is sequentially generated by an estimator. The target air-fuel ratio is generated according to an adaptive sliding mode control process performed by a sliding mode controller using the data of the identified and estimated values. The air-fuel ratio of an internal combustion engine is manipulated on the basis of the target air-fuel ratio according to a feed-forward control process.
Abstract:
A control apparatus controls an internal combustion engine by generating a command value for a manipulative quantity of a flow control valve disposed in an intake air passage of an internal combustion engine controllable by the flow control valve, according to a sliding mode control process in order to converge a predetermined control quantity relative to the internal combustion engine to a target value thereof. An object to be controlled by the sliding mode control process is modeled by a discrete system for generating the control quantity from the command value for the manipulative quantity of the flow control valve. The sliding mode control process uses a switching function constructed by a linear function composed of a plurality of time-series data of the difference between the control quantity and the target value. An algorithm for generating the command value for the manipulative quantity of the flow control valve in a predetermined control cycle according to the sliding mode control process is constructed based on the discrete-system model of the object to be controlled and the switching function.
Abstract:
A plant control system has an actuator for generating an input to the plant, a first sensor for detecting an output from the plant, a manipulated variable determining unit for sequentially determining a manipulated variable which determines the input to the plant to equalize the output from the first sensor to a predetermined target value, an actuator controller for controlling operation of the actuator based on the manipulated variable determined by the manipulated variable determining unit, and an estimator for sequentially generating data representing an estimated value of the output from the first sensor after a total dead time which is the sum of a first dead time of the plant and a second dead time of a system which comprises the actuator and the actuator controller. The manipulated variable determining unit determines the manipulated variable based on the data generated by the estimator.
Abstract:
A system for detecting malfunctions of an exhaust switch-over valve of an internal combustion engine, which opens/closes a bypass exhaust gas passage branched from an exhaust pipe of the engine and storing an adsorbent that adsorbs unburned components of the exhaust gas generated by the engine when the engine is started. In the system, the entrance temperature and the exit temperature in the bypass exhaust gas passage are detected and compared with each other in a first detection period when the passage is opened and in a second detection period when the passage is closed. Based on this comparison, it is determined whether the valve malfunctions. Alternatively, the valve malfunction is determined by comparing the valve opening/closing state with an instruction to operate the valve. With this, little time lag exists in the detection, thereby improving malfunction detection accuracy.
Abstract:
A plant control system controls a plant modeled as a discrete-system model including an element relative to a response delay of the plant. The plant control system includes an actuator for generating an input to the plant, a first detector detecting an output from the plant, and a second detector for detecting the input to the plant which is generated by the actuator. An identifier identifies parameters to be established of the discrete-system model based on data representing an output of the first detector and data representing an output of the second detector. A manipulated variable determining unit determines a manipulated variable which determines the input to the plant to control operation of the actuator such that the output from the first detector will be equalized to a predetermined target value, according to a predetermining algorithm using the parameters of the discrete-system model which are identified by the identifier.
Abstract:
A plant control system controls a plant modeled as a discrete-system model including an element relative to a response delay of the plant and an element relative to a dead time of the plant. The plant control system includes an actuator for generating an input to the plant, a first detector for detecting an output from the plant, and a second detector for detecting the input to the plant. An estimator generates data representing an estimated value of an output of the first detector after the dead time, based on data representing the output of the first detector and data representing an output of the second detector. A manipulated variable determining unit determines a manipulated variable which determines the input to the plant, based on the estimated value, represented by the data generated by the estimator, of the output of the first detector after the dead time. The input to the plant from the actuator is controlled such that the output from the first detector will be equalized to a predetermined target value.
Abstract:
An air-fuel ratio control system for a multi-cylinder engine is provided. An air-fuel ratio sensor is arranged in an exhaust system of the engine for detecting an air-fuel ratio of a mixture supplied to the engine and for generating an output indicative of the air-fuel ratio of the mixture. An adaptive controller determines an amount of fuel to be supplied to the engine with a first predetermined repetition period in a manner such that the output from the air-fuel ratio sensor becomes equal to a desired value. An adaptive parameter-adjusting mechanism adjusts adaptive parameters used by the adaptive controller. In the adaptive parameter-adjusting mechanism, the adaptive parameters are calculated with a second predetermined repetition period longer than the first predetermined repetition period, and output data indicative of results of the calculation is generated. Further, the output data indicative of results of the calculation is smoothed and output data indicative of the smoothed data is generated with a repetition period at least equal to the first predetermined repetition period. The adaptive controller uses the smoothed data as values of the adaptive parameters.