Abstract:
Methods for the production of omega-3 and/or omega-6 fatty acids in oleaginous yeasts grown on a fermentable carbon source selected from the group consisting of invert sucrose, glucose, fructose and combinations of these, provided that glucose is used in combination with invert sucrose and/or fructose. Specifically, methods are provided for production of linoleic acid, eicosadienoic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, arachidonic acid, n-6 docosapentaenoic acid, α-linolenic acid, stearidonic acid, eicosatrienoic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid.
Abstract:
Lysophosphatidic acid acyltransferase [“LPAAT”] participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids [“LC-PUFAs”] produced in oils of oleaginous organisms. An LPAAT isolated from Mortierella alpina [“MaLPAAT1”] that is suitable for use in the manufacture of oils enriched in LC-PUFAs in oleaginous organisms is disclosed. Most desirably, the substrate specificity of the instant MaLPAAT1 will be particularly useful to enable increased C18 to C20 elongation conversion efficiency and increased Δ4 desaturation conversion efficiency in recombinant host cells producing LC-PUFAs.
Abstract:
Methods to produce resveratrol and/or resveratrol glucoside in a recombinant oleaginous microorganism are provided. Expression of a resveratrol synthase gene in combination with genes involved in the phenylpropanoid pathway enabled recombinant microbial production of resveratrol in significant amounts.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
Abstract:
The present invention relates to Δ9 elongases, which have the ability to convert linoleic acid [18:2, LA] to eicosadienoic acid [20:2, EDA]. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ9 elongase along with methods of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ9 elongases in plants and oleaginous yeast are disclosed.
Abstract:
Lysophosphatidic acid acyltransferase [“LPAAT”] participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids [“LC-PUFAs”] produced in oils of oleaginous organisms. An LPAAT isolated from Mortierella alpina [“MaLPAAT1”] that is suitable for use in the manufacture of oils enriched in LC-PUFAs in oleaginous organisms is disclosed. Most desirably, the substrate specificity of the instant MaLPAAT1 will be particularly useful to enable increased C18 to C20 elongation conversion efficiency and increased Δ4 desaturation conversion efficiency in recombinant host cells producing LC-PUFAs.
Abstract:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
Abstract:
The present invention relates to Δ17 desaturases, which have the ability to convert ω-6 fatty acids into their ω-3 counterparts (i.e., conversion of arachidonic acid [20:4, ARA] to eicosapentaenoic acid [20:5, EPA]). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ17 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ17 desaturases in oleaginous yeast are disclosed.
Abstract:
Lysophosphatidic acid acyltransferase (LPAAT) participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids produced in oils of oleaginous organisms. The present application provides a nucleic acid fragment (identified as “LPAAT2”) isolated from Mortierella alpina encoding a LPAAT homolog that is suitable for use in the manufacture of oils enriched in omega fatty acids in oleaginous organisms. Most desirably, the substrate specificity of the instant LPAAT2 will be particularly useful to enable accumulation of long-chain PUFAs having chain lengths equal to or greater than C20 in oleaginous yeast, such as Yarrowia lipolytica.
Abstract:
Acyltransferases are provided, suitable for use in the manufacture of microbial oils enriched in omega fatty acids in oleaginous yeast (e.g., Yarrowia lipolytica). Specifically, genes encoding diacylglycerol acyltransferase (DGAT1) have been isolated from Y. lipolytica and Mortierella alpina. These genes encode enzymes that participate in the terminal step in oil biosynthesis in yeast. Each is expected to play a key role in altering the quantity of polyunsaturated fatty acids produced in oils of oleaginous yeasts.