Abstract:
A display may include an array of pixels. Each pixel in the array includes an organic light-emitting diode coupled to associated thin-film transistors. The diode may be coupled to drive transistor circuitry, a data loading transistor, and emission transistors. The drive transistor circuitry may include at least two transistor portions connected in series. The data loading transistor has a drain region connected to a data line and a source region connected directly to the drive transistor circuitry. The data line may be connected to and overlap the drain region of the data loading transistor. The data line and the source region of the data loading transistor are non-overlapping to reduce row-to-row crosstalk.
Abstract:
A display may include an array of pixels that receive control signals from a chain of gate drivers. Each gate driver may include a logic sub-circuit and an output buffer sub-circuit. The output buffer sub-circuit may include depletion mode semiconducting oxide transistors with high mobility. The logic sub-circuit may include semiconducting oxide transistors, some of which can be depletion mode transistors and some of which can be enhancement mode transistors with lower mobility. The logic sub-circuit may include at least a carry circuit, a voltage setting circuit, an inverting circuit, a discharge circuit.
Abstract:
An electronic device may include a display with pixels formed using light-emitting diodes, thin-film silicon transistors, thin-film semiconducting-oxide transistors, and capacitors. The silicon transistors, semiconducting-transistors, and capacitors may have control terminals that are coupled to gate or routing lines that extend across the face of the display and that are formed in a low resistance source-drain metal routing layer. Forming routing/gate lines using the low resistance source-drain metal routing layer dramatically reduces the resistance of the gate lines, which enables better timing margins for large display panels operating at higher refresh rates.
Abstract:
A system is disclosed. The system can comprise drive circuitry included in a first component of the system, the drive circuitry configured to drive a first touch electrode on a touch sensor panel. The system can also comprise a driving line configured to couple an output of the drive circuitry to the first touch electrode. The system can also comprise a feedback line configured to couple the output of the drive circuitry to an input of the drive circuitry, wherein a first end of the feedback line is coupled to the input of the drive circuitry at the first component, and a second end of the feedback line is configured to be coupled to the output of the drive circuitry at a second component, different from the first component, of the system.
Abstract:
The disclosure is related to head-to-head (H2H) gate on arrays (GOA) for pixel-based displays that may have reduced dimensions. In the described embodiments, the H2H design with alternate logic may be used to drive groups of pixels (e.g., a pixel row or column) with a primary and a secondary driver, located in opposite ends of the bezel of the electronic device. In the alternate-logic design, a shared shift-register may be used to enable two rows or columns. Embodiments in which more than two rows or columns are controlled by a single shift register are also described.
Abstract:
A display may have an array of pixels. Rows of pixels may receive gate line signals over gate lines. Display driver circuitry may have an adjustable clock generator that generates a series of clock pulses with different respective fall times to help equalize kickback voltages in the pixels of different rows. Within each row, gate lines may be provided with multiple parallel lines shorted at a series of tap points to help equalize kickback voltages across the pixels of different columns. A clock path may be formed between the clock generator and gate driver circuits. The clock path may run along an edge of the array of pixels. To help equalize kickback voltages in the pixels of different rows, the clock path may have first and second parallel metal lines that are selectively shorted to each other at a series of tap point locations along the clock path.
Abstract:
This application relates to methods and apparatus for refreshing a display device at various frequencies. Specifically, multiple areas of the display device can be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
The disclosure relates to systems and methods for reducing VCOM settling periods. A number of pixels is sub-divided into a plurality of regions. The pixels are configured to transmit light. A common voltage (VCOM) driving circuit is configured to drive a common electrode of the pixels. Moreover, each of a number of VCOM driving circuits includes a variable resistor configured to be driven to a resistance level based at least in part on which region of the plurality of regions includes an active pixel within the region. Furthermore, a resistance level is set and based at least in part on where the active pixel is located.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic display for providing a visual or video output for an electronic device. The electronic device includes a transistor layer configured to activate a first pixel row and a second pixel row. For each pixel in the first pixel row and the second pixel row, the transistor layer includes a switch transistor, a pixel electrode, and a common electrode. The electronic device further includes a pixel controller for selectively activating each pixel. The pixel controller includes a first gate line, a first drive line, and a second drive line. During operation, the first gate line provides a charge to the pixel electrode for a first pixel in the first pixel row and for a second pixel in the second pixel row, and the first drive line activates the switch transistor for the first pixel, and the second drive line activates the switch transistor for the second pixel.