摘要:
A metal mold for manufacturing amorphous alloy. A metal mold is composed of a lower mold having a portion for fusing metal material and a cavity portion, and an upper mold working with the lower mold which presses molten metal in the portion for fusing metal material and pours the molten metal into the cavity portion to mold. And, surface roughness of a part of or all of an inner surface of the metal mold is arranged to be more than 12S in JIS indication.
摘要:
A metal material is placed on a lower mold of a press metal mold which has an upper mold and the lower mold not having engagement portions. The metal material is fused by a high energy heat source, and obtained molten metal over a melting point is pressed with the press metal mold and transformed into a predetermined configuration. The molten metal is cooled at a rate over a critical cooling rate simultaneously with or after the transformation, and the molded product of amorphous metal in predetermined configuration is obtained.
摘要:
The present invention provides an amorphous alloy containing at least one element of Fe, Co, and Ni as a main component, at least one element of Zr, Nb, Ta, Hf, Mo, Ti and V, and B, wherein the temperature width &Dgr;Tx of a supercooled liquid region expressed by the equation &Dgr;Tx=Tx−Tg (wherein Tx indicates the crystallization temperature, and Tg indicates the glass transition temperature) is 20° C. or more. The amorphous alloy has excellent soft magnetic properties and high hardness, and can suitably be used for a transformer, a magnetic head, a tool, etc.
摘要:
An aluminum-based alloy having the general formula Al.sub.x L.sub.y M.sub.z (wherein L is Mn or Cr; M is Ni, Co, and/or Cu; and x, y, and z, representing a composition ratio in atomic percentages, satisfy the relationships x+y+z=100, 75.ltoreq.x.ltoreq.95, 2.ltoreq.y.ltoreq.15, and 0.5.ltoreq.z.ltoreq.10) having a metallographic structure comprising a quasi-crystalline phase possesses high strength and high rigidity. In order to enhance the ductility and toughness of the aluminum-based alloy, the atomic percentage of M may be further limited to 0.5.ltoreq.z.ltoreq.4, and more preferably to 0.5.ltoreq.z.ltoreq.3. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
摘要:
The present invention provides a sacrificial electrode material which consists of a single phase amorphous structure or a structure consisting of an amorphous phase and a crystalline solid solution phase and provides electrochemical corrosion protection to metallic articles exposed to an aqueous electrolytic solution. The electrode material is prepared by rapidly quenching a magnesium-based alloy material from the liquid phase or vapor phase thereof, the magnesium-based alloy material consisting the general formula: Mg.sub.bal X1.sub.a X2.sub.b or Mg.sub.bal X1.sub.a, wherein X1 is at least one element selected from the group consisting of Al, Zn, Ga, Ca and In; X2 is at least one element selected from the group consisting of Mm (misch metal), Y and rare earth metal elements; a and b are, in atomic percentages, 5.0.ltoreq.a.ltoreq.35.0 and 3.0.ltoreq.b.ltoreq.25.0, respectively. The magnesium-based alloy material may further contain one or more transition metal elements in their total contents not exceeding 1.0 atomic %.
摘要:
Deposition of a hard film of Ti-Si-N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at % .ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise. By this method there can be obtained a film having fine TiN crystalline particles uniformly dispersed in the matrix phase of Ti-Si amorphous metal or a film of functionally gradient structure in which the ratio of fine TiN crystalline particles dispersed in the matrix phase increases continuously or stepwise in the direction of thickness of the film.
摘要翻译:通过使用具有TiaSib组成的蒸发源(其中“a”和“b”表示分别落在75的范围内的原子百分比),将Ti-Si-N复合材料的硬膜沉积在基底上 at% = a = 85 at%和15 at% = b = 25 at%,提供+ b = 100 at%)。 在含有含氮反应气体的惰性气体的气氛中通过溅射法或离子镀法进行沉积,同时将反应气体的进料速率控制在室内,使得氮的分压保持恒定 或连续或逐步变化。 通过该方法可以获得均匀分散在Ti-Si非晶态金属的基体相中的细TiN结晶粒子的膜或其中分散在基体相中的细TiN结晶粒子的比例连续增加的功能梯度结构的膜,或 在膜的厚度方向上逐步地。
摘要:
A cast magnetic refrigerant having a composition represented byLn.sub.a A.sub.b M.sub.cwherein Ln is at least one element selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb; A is any one of elements of Al and Ga; M is at least one element selected from the group consisting of Fe, Co, Ni, Cu and Ag; each of a, b and c is atomic %, with the proviso that a+b+c=100 atomic %, 20 atomic % .ltoreq.a.ltoreq.80 atomic %, 5 atomic % .ltoreq.b .ltoreq.50 atomic %, 5 atomic % .ltoreq.c.ltoreq.60 atomic %, and having an amorphous structure with a difference .DELTA.T of 10K or more between a glass transition temperature Tg and a crystallization temperature Tx.
摘要翻译:具有由LnaAbMc表示的成分的铸造磁性制冷剂,其中Ln是选自由Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm和Yb组成的组中的至少一种元素; A是Al和Ga的元素中的任何一种; M是选自Fe,Co,Ni,Cu和Ag中的至少一种元素; a,b和c中的每一个是原子%,条件是a + b + c = 100原子%,20原子% = 80原子%,5原子% b = 50 原子%,5原子% = c <60原子%,并且在玻璃化转变温度Tg和结晶温度Tx之间具有10K或更高的差异ΔTA的非晶结构。
摘要:
A permanent magnet material having as main components thereof a rare earth element, a transition element (except for rare earth elements and Cu and Ag), and nitrogen and containing as an additive component thereof at least one element selected from the group consisting of Cu, Ag, Al, Ga, Zn, Sn, In, Bi, and Pb. It finds extensive utility in magnetic recording materials such as magnetic tapes, magnetic recording devices, and motors, for example.
摘要:
An aluminum-alloy, which is wear-resistant and does not wear greatly the opposed cast iron or steel, and which can be warm worked. The alloyings the following composition and structure. Composition: Al.sub.a Si.sub.b M.sub.c X.sub.d T.sub.e (where M is at least one element selected from the group consisting of Fe, Co and. Ni; X is at least one element selected from the group consisting of Y, Ce, La and Mm (misch metal); Y is at least one element selected from the group consisting of Mn, Cr, V, Ti, Mo, Zr, W, Ta and Hf; a=50-85 atomic %, b=10-49 atomic %, c=0.5-10 atomic %, d=0.5-10 atomic %, e=0-10 atomic %, and a+b+c+d+e=100 atomic %. Structure: super-saturated face-centered cubic crystals and fine Si precipitates.
摘要翻译:铝合金,耐磨,不会大大磨损相对的铸铁或钢,可以加热。 合金的组成和结构如下。 组成:AlaSibMcXdTe(其中M是选自Fe,Co和Ni中的至少一种元素; X是选自Y,Ce,La和Mm(混合稀土金属)中的至少一种元素; Y是 选自Mn,Cr,V,Ti,Mo,Zr,W,Ta和Hf中的至少一种元素; a = 50-85原子%,b = 10-49原子%,c = 0.5-10原子 %,d = 0.5-10原子%,e = 0-10原子%,a + b + c + d + e = 100原子%结构:超饱和的面心立方晶体和微细的Si析出物。
摘要:
Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost. These formed amorphous alloy products can be used as mechanical structure parts and components of high strength and high corrosion resistance, various strength members, electronic parts, arts and crafts, original printing plates, or the like.