Beam Turning Assembly with Polarization Splitter

    公开(公告)号:US20180335558A1

    公开(公告)日:2018-11-22

    申请号:US15982947

    申请日:2018-05-17

    Abstract: A first reflecting region is positioned at an end of an optical fiber and includes a polarization-sensitive reflector configured to selectively reflect a first polarization of light emanating from the optical fiber into a first reflected beam and transmit light that is not of the first polarization. The first reflected beam is directed toward a first optical grating coupler on a chip. A spacer layer is disposed on the first reflecting region such that light transmitted from the first reflecting region enters and passes through the spacer layer. A second reflecting region is disposed on the spacer layer and is configured to reflect light that is incident upon the second reflecting region into a second reflected beam directed toward a second optical grating coupler on the chip. A thickness of the spacer layer is set to control a separation distance between the first reflected beam and the second reflected beam.

    Lens Assembly for Optical Fiber Coupling to Target and Associated Methods

    公开(公告)号:US20180172910A1

    公开(公告)日:2018-06-21

    申请号:US15841210

    申请日:2017-12-13

    Abstract: A lens assembly for an optical fiber includes an optical gap structure and a multi-mode optical fiber. The optical gap structure has first and second ends and a length measured therebetween. The first end of the optical gap structure is configured to attach to an end of a single-mode optical fiber. The multi-mode optical fiber has first and second ends and a length measured therebetween. The first end of the multi-mode optical fiber is attached to the second end of the optical gap structure. The length of the optical gap structure and the length of the multi-mode optical fiber are set to provide a prescribed working distance and a prescribed light beam waist diameter. The prescribed working distance is a distance measured from the second end of the multi-mode optical fiber to a location of the prescribed light beam waist diameter.

    Chip-to-chip optical data communication system

    公开(公告)号:US11994724B2

    公开(公告)日:2024-05-28

    申请号:US17671525

    申请日:2022-02-14

    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.

    Multi-Chip Packaging of Silicon Photonics

    公开(公告)号:US20230070458A1

    公开(公告)日:2023-03-09

    申请号:US17987485

    申请日:2022-11-15

    Abstract: A multi-chip package assembly includes a substrate, a first semiconductor chip attached to the substrate, and a second semiconductor chip attached to the substrate, such that a portion of the second semiconductor chip overhangs an edge of the substrate. A first v-groove array for receiving a plurality of optical fibers is present within the portion of the second semiconductor chip that overhangs the edge of the substrate. An optical fiber assembly including the plurality of optical fibers is positioned and secured within the first v-groove array of the second semiconductor chip. The optical fiber assembly includes a second v-groove array configured to align the plurality of optical fibers to the first v-groove array of the second semiconductor chip. An end of each of the plurality of optical fibers is exposed for optical coupling within an optical fiber connector located at a distal end of the optical fiber assembly.

    Thermal management system for multi-chip-module and associated methods

    公开(公告)号:US11493708B2

    公开(公告)日:2022-11-08

    申请号:US17021805

    申请日:2020-09-15

    Abstract: A plurality of lid structures include at least one lid structure configured to overlie one or more heat sources within a multi-chip-module and at least one lid structure configured to overlie one or more temperature sensitive components within the multi-chip-module. The plurality of lid structures are configured and positioned such that each lid structure is separated from each adjacent lid structure by a corresponding thermal break. A heat spreader assembly is positioned in thermally conductive interface with the plurality of lid structures. The heat spreader assembly is configured to cover an aggregation of the plurality of lid structures. The heat spreader assembly includes a plurality of separately defined heat transfer members respectively configured and positioned to overlie the plurality of lid structures. The heat spreader assembly is configured to limit heat transfer between different heat transfer members within the heat spreader assembly.

    Beam Steering Structure with Integrated Polarization Splitter

    公开(公告)号:US20220214509A1

    公开(公告)日:2022-07-07

    申请号:US17700367

    申请日:2022-03-21

    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.

    Chip-to-Chip Optical Data Communication System

    公开(公告)号:US20220171142A1

    公开(公告)日:2022-06-02

    申请号:US17671525

    申请日:2022-02-14

    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.

Patent Agency Ranking