Abstract:
Embodiments of the present disclosure discloses a touch panel; a plurality of second electrodes; a plurality of the first electrode leads for leading the first electrodes, which are connected to each other, out of a touch area; a plurality of the second electrode leads for leading the second electrodes, which are connected to each other, out of the touch area. The touch panel further includes at least one transparent conductive layer which is formed on at least one surface of each of the first and/or second electrode leads and which is formed in the same layer as at least one of the first and second electrodes, the first and second connecting wires. The embodiments of the present disclosure may prevent oxidation of the electrode leads and increase adhesion without increasing manufacture processes.
Abstract:
An embodiment of the present invention relates to a technical field of display and provides an array substrate and a method for producing the same and a display apparatus that may simplify the layer arrangements and producing process of the array substrate, reduce the difficulty for producing the array substrate and improve the product yield of the array substrate. The array substrate comprises: a substrate base; and a thin film transistor unit and a color film on the substrate base, wherein the color film is conductive and electrically connected with a drain electrode of the thin film transistor unit.
Abstract:
The invention provides a vinyl ether group-containing copolymer, preparation process and use thereof. The copolymer comprises of the structural units represented by the following general formulae I, II and III, wherein, R1 is O or HN, R2 is an alkyl group with a carbon atom number of 1-4, cyclohexyl or a group represented by the following general formula IV (m represents a positive integer of 1-3), n is a positive integer of 1-4, the molar numbers of the structural units represented by the general formulae I, H and III are x, y and z, respectively, and x:y:z=3-8:1-4:1-5, the weight average molecular weight of the copolymer is 5000-20000. A color light blocking agent added with the copolymer can increase sensitivity. Furthermore, the copolymer has solubility in an alkaline solution, and thus, the color light blocking agent added with the copolymer has a superior developing property.
Abstract:
An array substrate, a display device comprising the array substrate and a method of manufacturing the array substrate are provided. The array substrate include a substrate (1) and a plurality of sub-pixel units on the substrate (1), and each of the sub-pixel units includes a thin film transistor main body layer (2) and a color filter layer (5) disposed above the thin film transistor main body layer (2), and the thin film transistor main body layer (2) includes a gate layer (21), a source layer, a drain layer (24) and a passivation layer (25), an additional layer (7) is further disposed on an upper surface of the thin film transistor main body layer (2), a hollow photoresist material containing part (50) is disposed in a region of the additional layer corresponding to each of the sub-pixel units, a color film material is disposed within the photoresist material containing part (50), and a pixel electrode via hole (6) is formed in the additional layer (7) and the passivation layer (25) at a region corresponding to the drain layer (24). The thin film transistor in the array substrate has a more stable performance, the array substrate has a simpler manufacturing process and lower cost, and the display devices comprising the array substrate has a more stable performance.
Abstract:
The invention provides a conductive graphene-metal composite material, which is a composite of monolayer graphene nanoflakes and metal or metal oxide. The monolayer graphene nanoflakes of the invention are made by exfoliating graphite, and have a good combination with metal material by adopting an ultrasonic treatment or a mechanical agitation treatment. The graphene is uniformly dispersed therein and forms a conductive network, which can improve the electrochemical activity efficiently and reduce the resistance against the transfer of the charges efficiently. Use of the graphene-metal composite electrode reduces the costs of processes and facilities, on the premise of good properties. It can be used to replace the ITO conductive layer of the liquid crystal display.
Abstract:
A substrate includes a driving backplane, a plurality of first connecting lines and a plurality of second connecting lines. The driving backplane includes a base substrate, at least one first lead group and at least one second lead group. Each first lead group includes a plurality of first leads, and each second lead group includes a plurality of second leads. A first lead group and a corresponding second lead group is disposed in a peripheral region. The plurality of first connecting lines are disposed on at least one side face of the driving backplane, each first connecting line is electrically connected to at least one first lead. The plurality of second connecting lines are disposed on the at least one side face of the driving backplane, each second connecting line is electrically connected to at least one second lead, and is in contact with a corresponding first connecting line.
Abstract:
A light guide plate, a backlight module and a display device are provided. A plurality of blind holes is arranged at a surface of the light guide plate; the blind hole is filled with a light-converting unit; the light-converting unit includes an accommodating cavity made of a light-transmitting material, and a light-converting material located in the accommodating cavity; and a gap is between an outer wall of the accommodating cavity and an inner wall of the blind hole.
Abstract:
The present disclosure relates to a display panel. The display panel includes a light switching layer, and a color film layer located on the light switching layer, wherein the color film layer includes a diffraction grating. The color film layer further includes a collimating layer located on a side of the diffraction grating facing away from the light switching layer. The color film layer further includes a light splitting layer located between the diffraction grating and the light switching layer.
Abstract:
The present disclosure provides a circuit substrate, a method for manufacturing the same, a display substrate and a tiled display device. The circuit substrate includes: a base substrate; a driving circuit on the base substrate; and conductive connection portions. A plurality of grooves is defined in a lateral side of the base substrate; each of the plurality of grooves extends through a top surface and an opposite bottom surface of the base substrate. The driving circuit includes signal lines on the top surface of the base substrate and signal-line leads on the bottom surface of the base substrate. The plurality of conductive connection portions are corresponding to the plurality of grooves in a one-to-one manner; at least one part of the conductive connection portion is in the corresponding groove. The conductive connection portion is connected with the corresponding signal line and the corresponding signal-line lead, respectively.
Abstract:
A thin film transistor includes: a bottom gate electrode; a bottom gate electrode insulating layer, a semiconducting active layer and a first insulating layer which are disposed on the bottom gate electrode in sequence; a source electrode and a drain electrode which are disposed at a side of the first insulating layer away from the bottom gate electrode; vias disposed in the first insulating layer at positions which correspond to the source electrode and the drain electrode respectively; and ohmic contact layers disposed on and covering the semiconducting active layer at positions corresponding to the vias respectively. Each of the source electrode and the drain electrode is in contact with a corresponding one of the ohmic contact layers through a corresponding one of the vias.