Abstract:
A method of providing a memory cell comprises providing a semiconductor substrate including a body of a first conductivity type, first and second regions of a second conductivity type and a channel between the first and second regions; arranging a first insulator layer adjacent to the substrate; arranging a charge storage region adjacent to the first insulator layer; arranging a second insulator layer adjacent to the charge storage region; arranging a first conductive region adjacent to the second insulator layer; arranging a layer adjacent to the first conductive region; arranging a second conductive region adjacent to the layer; and increasing mechanical stress of at least one of the first and second conductive regions. The second conductive region overlaps the first conductive region at an overlap surface, and wherein a line perpendicular to the overlap surface intersects at least a portion of the charge storage region.
Abstract:
Methods and apparatus on charges injection using piezo-ballistic-charges injection mechanism are provided for semiconductor device and nonvolatile memory device. The device comprises a strain source, an injection filter, a first conductive region, a second conductive region, and a third conductive region. The strain source permits piezo-effect in ballistic charges transport to enable the piezo-ballistic-charges injection mechanism in device operations. The injection filter permits transporting of charge carriers of one polarity type from the first conductive region, through the filter, and through the second conductive region to the third conductive region while blocking the transport of charge carriers of an opposite polarity from the second conductive region to the first conductive region. The present invention further provides an energy band engineering method permitting the devices be operated without suffering from disturbs, from dielectric breakdown, from impact ionization, and from undesirable RC effects.
Abstract:
A method of providing a memory cell includes providing a body of a semiconductor material having a first conductivity type, arranging a filter of a conductor-filter system in contact with a first conductor of the conductor-filter system, arranging at least portion of a second conductor of a conductor-insulator system in contact with the filter, arranging a first insulator of the conductor-insulator system in contact with the second conductor at an interface, arranging a first region spaced from the second conductor, arranging a channel of the body between the first region and the second conductor, arranging a second insulator adjacent to the first region, arranging a charge storage region between the first and the second insulators, arranging a first portion of a word-line adjacent to and insulated from the charge storage region, and arranging a second portion of the word-line adjacent to and insulated from the body.
Abstract:
A memory device, array and method of arranging where the memory device includes a memory cell region including a plurality of memory cells. Each memory cell includes a source, a drain and a channel between the source and the drain, a channel dielectric, a charge storage region and an electrically alterable conductor-material system in proximity to the charge storage region. Cell lines extend among the memory cells. A connection region is provided for electrically coupling contacts and one or more of the cell lines. A non-memory region has embedded logic. Memory cells are arrayed at a cell pitch, with cell lines extending from cell to cell and arrayed substantially at the cell pitch, and with contacts arrayed substantially at the cell pitch forming a high density memory device.
Abstract:
Nonvolatile memory cells having a conductor-filter system, a conductor-insulator system, and a charge-injection system are provided. The conductor-filter system provides band-pass filtering function, charge-filtering function, and mass-filtering function to charge-carriers flows. The conductor-insulator system provides Image-Force barrier lowering effect to collect charge-carriers. The charge-injection system includes the conductor-filter system and the conductor-insulator system, wherein the filter of the conductor-filter system contacts the conductor of the conductor-insulator system. Apparatus on cell architecture are provided for the nonvolatile memory cells. Additionally, apparatus on array architectures are provided for constructing the nonvolatile memory cells in memory array. Method on manufacturing such memory cells and array architectures are provided.
Abstract:
A method comprises providing a first conductive region, arranging a second conductive region adjacent to and insulated from the first conductive region by a dielectric region, arranging a third region adjacent to and insulated from the second conductive region, and adjusting mechanical stress to at least one of the first conductive region and the second conductive region.
Abstract:
A system for tracking elements employing fixed tags that are permanently attached to elements. The tags include radio-frequency (RF) communication units that are adapted for wireless communication with RF communicators. The RF tags are permanently affixed to elements as part of the manufacturing of products such as cell phones, PDA's, computers, routers and other electronic equipment. The RF tags are installed during manufacturing in a manner that resists tampering and interference. The RF tags are installed with mechanical barriers to access and are hidden from view in non-user accessible locations.
Abstract:
A management system for tracking elements through steps and stages of a chain employing fixed tags permanently attached to elements that progress through the steps and stages. The elements are tracked by the fixed tags from an initial stage, through multiple work-in-process stages to a final stage of the chain. The fixed tags include radio-frequency (RF) communication units that have wireless communication with RF communicators in one or more of the stages of the supply chain. The wireless communications between the RF tags and the RF communicators operate with a tag communication protocol that defines the operations and sequences for storing information into and retrieval of information from tags. The hierarchy of data storage in RF tags, in RF communicators and otherwise in storage locations in the system is controlled to operate within the memory hierarchy.
Abstract:
A method of forming an array of floating gate memory cells, and an array formed thereby, wherein each memory cell includes an electrical conductive floating gate formed in a trench in a semiconductor substrate, and an electrical conductive control gate having a portion disposed over and insulated from the floating gate. An electrical conductive tunneling gate is disposed over and insulated from the control gate by an insulating layer to form a tri-layer structure permitting both electron and hole charges tunneling through at similar tunneling rate. Spaced apart source and drain regions are formed with the source region disposed adjacent to and insulated from a lower portion of the floating gate, and with the drain region disposed adjacent to and insulated from an upper portion of the floating gate with a channel region formed therebetween and along a sidewall of the trench.
Abstract:
A nonvolatile memory cell is provided. The memory cell includes a storage transistor and an injector in a well of an n-type conductivity. The well is formed in a semiconductor substrate of a p-type conductivity. The storage transistor comprises a source, a drain, a channel, and a charge storage region. The source and the drain are formed in the well and having the p-type conductivity with the channel of the well defined therebetween. The charge storage region is disposed over and insulated from the channel region by an insulator. Further provided are methods operating the memory cell, including means for injecting electrons from the channel through the insulator onto the charge storage region and means for injecting holes from the injector through the well through the channel through the insulator onto the charge storage region. The memory cell can be implemented in a conventional logic CMOS process.