Abstract:
A method and system for dynamic adjustment of downlink/uplink resource allocation ratio in a long-term evolution (LTE) time division duplex (TDD) system is disclosed. The method includes replacing at least one uplink subframe in a subframe pattern with at least one of a mute subframe and a mute uplink pilot timeslot (UpPTS), within a geographical guard area that isolates at least two areas having different TDD allocation patterns. The method further includes scheduling an uplink transmission from at least one mobile terminal such that the at least one of the mute subframe and the mute UpPTS are unused. A simple solution or a TDD configuration index substitution solution, or any combination thereof, may be used to control the uplink transmission involving a mute subframe or a mute UpPTS.
Abstract:
The present invention, known as The Collaboration Portal (COPO), relates generally to the field of automated entity, data processing, system control, and data communications, and more specifically to an integrated method, system, and apparatus for providing computer-accessible benefits for communities of users. It provides a framework for provisioning computer-accessible benefits for communities of users, and can efficiently and robustly distribute the processing in behalf of those users over a decentralized network of computers. The field of the invention generally encompasses enabling appropriate and desired communication among communities of users and organizations, and providing information, goods, services, a works, opportunities, and connections among users and organizations.
Abstract:
A configuration method and an indication method of MBSFN frames and an identifying method used by a terminal applied in a long term evolution system are disclosed in the present invention, which include: an access network sends configuration parameters of the MBSFN frame to a mobile terminal determining whether the wireless frame received is an MBSFN frame according to the configuration parameters, the configuration parameters including a repetition period of the MBSFN frames distributed in system-set time. With the present invention, it could consume less bytes in system message to complete the configuration of the MBSFN sub-frames and could save system resources.
Abstract:
A lever stapler includes a plastic cover, a pressure plate, a stapling bracket, a staple cartridge, a staple slot, a staple driver, a staple driving shaft, a staple driving spring, a staple plate, a support stand, a base, and a rotating shaft. The pressure plate includes a lever pressing plate disposed thereon, and a rear end of the lever pressing plate is hinged onto the support stand through a fulcrum shaft, and the lever pressing plate further includes a lever shaft contacted with the top of the pressure plate. The lever stapler of the invention enhances the stapling force to achieve the effects of reducing the required force for the stapling and stapling a thick document easily.
Abstract:
A logging system includes an event receiver and a storage manager. The receiver receives log data, processes it, and outputs a column-based data “chunk.” The manager receives and stores chunks. The receiver includes buffers that store events and a metadata structure that stores metadata about the contents of the buffers. Each buffer is associated with a particular event field and includes values from that field from one or more events. The metadata includes, for each “field of interest,” a minimum value and a maximum value that reflect the range of values of that field over all of the events in the buffers. A chunk is generated for each buffer and includes the metadata structure and a compressed version of the buffer contents. The metadata structure acts as a search index when querying event data. The logging system can be used in conjunction with a security information/event management (SIEM) system.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
Abstract:
Ionic interactions are monitored to detect hybridization. The measurement may be done measuring the potential change in the solution with the ion sensitive electrode (which may be the conducting polymer (e.g., polyaniline) itself), without applying any external energy during the binding. The double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode—the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective. Polyaniline on the surface of nylon film forms a positively charged polymer film. Thiol linkage can be utilized for polyaniline modification and thiol-modified single strand oligonucleotide chains can be added to polyaniline. The sensitivity is because the double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode as the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective.
Abstract:
A stacked chip semiconductor package may be formed in a “package in package” arrangement. The internal package may include two substrates. One substrate may have two dice stacked on each of two opposed sides and the other substrate may have two dice stacked on it as well. The two stacked substrates may be separated by molding compound and then electrically coupled to a third substrate. Thereafter, the entire assembly may be encapsulated.
Abstract:
A method for doping fin structures in FinFET devices includes forming a first glass layer on the fin structure of a first area and a second area. The method further includes removing the first glass layer from the second area, forming a second glass layer on the fin structure of the first area and the second area, and annealing the first area and the second area to dope the fin structures.