摘要:
Ionic interactions are monitored to detect hybridization. The measurement may be done measuring the potential change in the solution with the ion sensitive electrode (which may be the conducting polymer (e.g., polyaniline) itself), without applying any external energy during the binding. The double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode—the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective. Polyaniline on the surface of nylon film forms a positively charged polymer film. Thiol linkage can be utilized for polyaniline modification and thiol-modified single strand oligonucleotide chains can be added to polyaniline. The sensitivity is because the double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode as the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective.
摘要:
Cyclic voltammetry (CV) may be used with novel sensors for identifying the presence of target sequences complementary to probe sequences. The sensor may include an electrode layer (which is used as a working electrode in a CV system), a conductive polymer layer, and probes immobilized (e.g., via sulfur) on the conductive polymer layer. The conductive polymer layer may be polyaniline, or the like. The probes may be immobilized on the polymer layer using an electro-chemical immobilization technique in the presence of nucleophiles, such as thiol groups for example. The probes may be oligionucleotides. Thus, the sensors may be used for identifying genomic sequence variations and detecting mismatch base pairs, such as single nucleotide polymorphisms (SNPs) for example.
摘要:
Enantiomeric resolution is realized by combining an electrochemical method with ligand exchange (LE) in a novel electrochemical method named chiral ligand exchange potentiometry. Chiral selector ligands preferentially recognize certain enantiomers and undergo ligand exchange with the enantiomeric labile coordination complexes to form diastereoisomeric complexes. These complexes can form in solution and be recognized by an unmodified electrode, or they can be immobilized on the surface of a modified electrode (chiral sensor) incorporated with the chiral selector ligand by polysiloxane monolayer immobilization (PMI). Considerable stereoselectivity occurs in the formation of these diastereoisomeric complexes, and their net charges (Nernst factors) are different, thus enabling enantiomers to be distinguished by potentiometric electrodes without any pre-separation processes.
摘要:
Sensors suitable for the sensing/detection of biological or chemical agents may be fabricated by immobilizing biological and/or chemical recognition components (selectors or probes) on a substrate by the polymerization of a suitable monomer in the presence of the selectors or probes, for example, by Polysiloxane Monolayer Immobilization (PMI). PMI may involve the polymerization of polysiloxane onto a substrate, onto which selector molecules are adsorbed or otherwise immobilized. The resulting immobilized selector molecule may then be used to interact with specific molecules (targets) within a mixture of molecules, thereby enabling those specific molecules to be detected and/or quantified.
摘要:
A real-time, portable peptide-containing potentiometric biosensor that can directly identify bacterial spores. Two peptides for specific recognition of B. subtilis and B. anthracis Sterne may be immobilized by a polysiloxane monolayer immobilization (PMI) technique. The sensors translate the biological recognition event into a potential change by detecting, for example, B. subtilis spores in a concentration range of 0.08-7.3×104 CFU/ml. The sensor exhibited highly selective recognition properties towards Bacillus subtilis spores over other kinds of spores. The selectivity coefficients of the sensors for other kinds of spores are in the range of 0-1.0×10−5. The biosensor system not only has the specificity to distinguish Bacillus subtilis spores in a mixture of B. subtilis and B. thuringiensis (thur.) Kurstaki spores, but also can discriminate between live and dead B. subtilis spores. Furthermore, the sensor can distinguish a Bacillus subtilis 1A700 from other B. subtilis strain. Assay time may be as low as about 5 minutes for a single test. Rapid identification of B. anthracis Sterne and B. anthracis ΔAmes was also provided.
摘要:
A real-time method employing a portable peptide-containing potentiometric biosensor, can directly detect and/or quantify bacterial spores. Two peptides for specific recognition of B. subtilis and B. anthracis Sterne may be immobilized by a polysiloxane monolayer immobilization (PMI) technique. The sensors translate the biological recognition event into a potential change by detecting, for example, B. subtilis spores in a concentration range of 0.08-7.3×104 CFU/ml. The sensing method exhibited highly selective recognition properties towards Bacillus subtilis spores over other kinds of spores. The selectivity coefficients of the sensors for other kinds of spores are in the range of 0-1.0×10−5. The biosensor method not only has the specificity to distinguish Bacillus subtilis spores in a mixture of B. subtilis and B. thuringiensis (thur.) Kurstaki spores, but also can discriminate between live and dead B. subtilis spores. Furthermore, the sensing method can distinguish a Bacillus subtilis 1A700 from other B. subtilis strain. Assay time may be as low as about 5 minutes for a single test. Rapid identification of B. anthracis Sterne and B. anthracis ΔAmes was also provided.
摘要:
Ionic interactions are monitored to detect hybridization. The measurement may be done measuring the potential change in the solution with the ion sensitive electrode (which may be the conducting polymer (e.g., polyaniline) itself), without applying any external energy during the binding. The double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode—the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective. Polyaniline on the surface of nylon film forms a positively charged polymer film. Thiol linkage can be utilized for polyaniline modification and thiol-modified single strand oligonucleotide chains can be added to polyaniline. The sensitivity is because the double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode as the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective.
摘要:
Sensors suitable for the sensing/detection of biological or chemical agents may be fabricated by immobilizing biological and/or chemical recognition components (selectors or probes) on a substrate by the polymerization of a suitable monomer in the presence of the selectors or probes, for example, by Polysiloxane Monolayer Immobilization (PMI). PMI may involve the polymerization of polysiloxane onto a substrate, onto which selector molecules are adsorbed or otherwise immobilized. The resulting immobilized selector molecule may then be used to interact with specific molecules (targets) within a mixture of molecules, thereby enabling those specific molecules to be detected and/or quantified.
摘要:
An electrochemical method for producing a hole extraction layer in a solar cell based on organic semiconductor materials. Conjugated polymers are used to build a hole extraction layer and a photoactive layer. Poly(3,4-ethylenedioxythiophene) (PEDOT) is used as a hole extraction layer and is deposited electrochemically from an aqueous solution on an indium tin oxide (ITO) electrode. A nanofibrilar or nanogranular morphology of the PEDOT is achieved by carrying out the polymerization in the presence of a surfactant. A photoactive layer of poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) can be deposited by spin-coating technique on top of the PEDOT layer.
摘要:
Methods for preparing an oligomer exhibiting supramolecular extension of π-conjugation are described. The manipulation of intra-oligomeric properties such as π-conjugation length and the precise architecture(s) resulting from inter-oligomeric variations resulting from supramolecular chemistry offers great promise in the design of nanoscale devices. As shown, self-assembly of the supramolecular structure can be induced by causing a molecule: dopant molar ratio to go beyond the predicted theoretical fully-doped molar ratio.