Abstract:
In an embodiment, a patient monitor, such as a pulse oximeter, functions as a spot check glucometer when in communication with a blood glucose strip reader. In an embodiment, communications between the patient monitor and the strip reader may optionally be encrypted. Embodiments also include the strip reader housed in a dongle configured to mate with a sensor port of the pulse oximeter.
Abstract:
The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
Abstract:
A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and noninvasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
Abstract:
In an embodiment, a patient monitor, such as a pulse oximeter, functions as a spot check glucometer when in communication with a blood glucose strip reader. In an embodiment, communications between the patient monitor and the strip reader may optionally be encrypted. Embodiments also include the strip reader housed in a dongle configured to mate with a sensor port of the pulse oximeter.
Abstract:
An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.
Abstract:
A sensor system has a low-noise sensor controller providing communications between an active-temperature-regulated optical sensor and an external monitor. A low-noise sensor controller drives optical emitters, receives resulting detected signals after attenuation by a blood perfused tissue site and communicates the detector signals to the attached signal processor. An optically-isolated controller front-end receives and digitizes the detected signals. A controller serializer transmits the digitized detector signal to the processor via a single, shielded coaxial cable.
Abstract:
An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.
Abstract:
Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from essentially the same, overlapping, or proximate regions of tissue of a patient are disclosed. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus and can be oriented such that each sensor is directed towards, or can obtain a measurement from, the same or a similar location.
Abstract:
A physiological test credit method determines if test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server. In various embodiments, the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.
Abstract:
The present disclosure provides an electronic device that includes at least one sensor indicative of a physiological condition of a user, the at least one sensor worn by a patient. The electronic device can further include a location determination module configured to determine a location of a patient. The electronic device can receive a measured information from the sensor and determine if the physiological condition of the user indicates an urgent medical need. When the physiological condition of the user indicates an urgent medical need, the electronic device can contact emergency services and access and contact one or more of a contact in an electronic address book associated with the processing system. The electronic device can provide a location of the user based on information determined by the location determination module.