摘要:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
摘要:
A method is provided for fabricating a bipolar transistor in which a collector layer is formed which includes an active portion having a relatively high dopant concentration and a second portion which has a lower dopant concentration. An epitaxial intrinsic base layer is formed to overlie the collector layer in conductive communication with the active portion of the collector layer. A low-capacitance region is formed laterally adjacent to the second portion of the collector layer, the low-capacitance region including a dielectric region disposed in an undercut directly underlying the intrinsic base layer. An emitter layer is formed to overlie the intrinsic base layer.
摘要:
The present invention relates to a programmable semiconductor device, preferably a FinFET or tri-gate structure, that contains a first contact element, a second contact element, and at least one fin-shaped fusible link region coupled between the first and second contact elements. The second contact element is laterally spaced apart from the first contact element, and the fin-shaped fusible link region has a vertically notched section. A programming current flowing through the fin-shaped fusible link region causes either significant resistance increase or formation of an electric discontinuity in the vertically notched section. Alternatively, the vertically notched section may contain a dielectric material, and application of a programming voltage between a gate electrode overlaying the vertically notched section and one of the contact elements breaks down the dielectric material and allows current flow between the gate electrode and the fin-shaped fusible link region.
摘要:
An eFuse begins with a single crystal silicon-on-insulator (SOI) structure that has a single crystal silicon layer on a first insulator layer. The single crystal silicon layer is patterned into a strip. Before or after the patterning, the single crystal silicon layer is doped with one or more impurities. At least an upper portion of the single crystal silicon layer is then silicided to form a silicided strip. In one embodiment the entire single crystal silicon strip is silicided to create a silicide strip. Second insulator(s) is/are formed on the silicide strip, so as to isolate the silicided strip from surrounding structures. Before or after forming the second insulators, the method forms electrical contacts through the second insulators to ends of the silicided strip. By utilizing a single crystal silicon strip, any form of semiconductor, such as a diode, conductor, insulator, transistor, etc. can form the underlying portion of the fuse structure. The overlying silicide material allows the fuse to act as a conductor in its unprogrammed state. However, contrary to metal or polysilicon based eFuses which only comprise an insulator in the programmed state, when the inventive eFuse is programmed (and the silicide is moved or broken) the underlying semiconductor structure operates as an active semiconductor device.
摘要:
The present invention provides an epitaxial imprinting process for fabricating a hybrid substrate that includes a bottom semiconductor layer; a continuous buried insulating layer present atop said bottom semiconductor layer; and a top semiconductor layer present on said continuous buried insulating layer, wherein said top semiconductor layer includes separate planar semiconductor regions that have different crystal orientations, said separate planar semiconductor regions are isolated from each other. The epitaxial printing process of the present invention utilizing epitaxial growth, wafer bonding and a recrystallization anneal.
摘要:
Enhanced silicon-on-insulator (SOI) buried oxide (BOX) structures and methods are provided for implementing enhanced SOI BOX structures. An oxygen implant step is performed from a backside into a thinned silicon substrate layer. An anneal step forms thick buried oxide (BOX) regions from oxygen implants in the silicon substrate layer. The oxygen implant step forms an isolated region near the oxygen implants. A backside implant step selectively dopes the isolated region for forming a backgate for an SOI device being formed including a selected one of anti-fuse (AF) devices, and SOI transistors including PFET and NFET devices.
摘要:
A resettable fuse device is fabricated on one surface of a semiconductor substrate (10) and includes: a gate region (20) having first and second ends; a source node (81) formed in proximity to the first end of the gate region; an extension region (52) formed to connect the source node to the first end of the gate region; and a drain node (80) formed in proximity to the second end of the gate region and separated from the gate region by a distance (D) such that upon application of a predetermined bias voltage to the drain node a connection between the drain node and the second end of the gate region is completed by junction depletion. A gate dielectric (30) and a gate electrode (40) are formed over the gate region. Current flows between the source node and the drain node when the predetermined bias is applied to both the drain node and the gate electrode.
摘要:
A thermal monitor diode is provided that comprises a silicon thin film on an insulator mounted on a silicon substrate. An opening extends through the silicon thin film and through the insulator and partially into the silicon substrate and terminates at an end wall. A conductive material is disposed in the opening and extends to the end wall. The substrate has a P/N junction formed therein adjacent the end wall, and an insulating spacer material surrounds the conductive material and is sufficiently thin to allow temperature excursions in the silicon thin film to pass therethrough. The invention also contemplates a method of forming the diode.
摘要:
A dual work function semiconductor structure with borderless contact and method of fabricating the same are presented. The structure may include a field effect transistor (FET) having a substantially cap-free gate and a conductive contact to a diffusion adjacent to the cap-free gate, wherein the conductive contact is borderless to the gate. Because the structure is a dual work function structure, the conductive contact is allowed to extend over the cap-free gate without being electrically connected thereto.
摘要:
The present invention relates to e-fuse devices, and more particularly to a device and method of forming an e-fuse device, the method comprising providing a first conductive layer connected to a second conductive layer, the first and second conductive layers separated by a barrier layer having a first diffusivity different than a second diffusivity of the first conductive layer. A void is created in the first conductive layer by driving an electrical current through the e-fuse device.