摘要:
An optical electronic coupling device (100) including a molded waveguide (101, 301, 401) having a plurality of core regions (105) surrounded by a cladding region (103). Cross-sections of the core regions (105) are exposed in an opening (113, 213,313) at one end of the waveguide. An optical cable (102, 303) having a plurality of optical fibers (107, 108, 109, 300) with core regions (123, 124, 125) is inserted into the opening (113, 213, 313), thereby aligning the core regions (123, 124, 125) of the optical fibers (107, 108, 109, 300) with the exposed cross-sections (122) of the core regions (105) of the optical electronic device (100).
摘要:
A molded optical waveguide having electrical conductors molded therein for contacting an optical device mounted at one end of the waveguide and providing external electrical access to the optical device at exposed sides of the waveguide. The waveguide and assembled optical device is mounted on a printed circuit board or the like and contacted by lead wires.
摘要:
A cellular mobile station including a modem processor and memory. The memory includes instructions for the modem processor to perform layer 1 processor operations, layer 2 processor operations, and layer 3 processor operations. The modem processor executes the instructions to perform processor operations for the cellular mobile station to communication data as per a cellular communications protocol. In one example, the mobile station includes different levels of memory to provide different deterministic access times
摘要:
A storage circuit has an input for receiving and storing data, a first power terminal coupled to a first conductor for receiving a first power supply voltage, and a second power terminal coupled to a second conductor. A power gate device has a first terminal coupled to the second conductor, a control terminal for receiving a bias voltage in response to a control signal, and a second terminal coupled to a terminal for receiving a second power supply voltage. A shorting device selectively electrically short circuits the first terminal of the power gate device to the control terminal of the power gate device in response to the control signal, thereby converting the power gate device from a transistor into a diode-connected device. The shorting device is smaller in size than the power gate device.
摘要:
An integrated circuit (103) having a plurality of integrated circuit portions (111, 113, and 115) where each of the plurality of integrated circuit portions receives a corresponding voltage of a plurality of voltages. Selection circuitry (127 and 123) selects a selected voltage of the plurality of voltages and provides an indication of the selected voltage to adjust the supply voltage to the integrated circuit. in one embodiment, the indication may correspond to an analog signal proportional to the selected voltage such as e.g. at the selected voltage or at a voltage less than or greater than the selected voltage. A power supply system (105), coupled to the integrated circuit, may be used to receive the indication of the selected voltage and adjust the supply voltage based on the indication.
摘要:
Power consumption may be reduced through the use of power gating in which power is removed from circuit blocks or portions of circuit blocks in order to reduce leakage current. One embodiment uses a modified state retention flip-flop capable of retaining state when power is removed or partially removed from the circuit. Another embodiment uses a modified state retention buffer capable of retaining state when power is removed or partially removed from the circuit. The state retention flip-flop and buffer may be used to allow for state retention while still reducing leakage current. Also disclosed are various methods of reducing power and retaining state using, for example, the state retention flip-flops and buffers. For example, software, hardware, or a combination of software and hardware methods may be used to enter a deep sleep or idle mode while retaining state.
摘要:
Well bias circuitry for selectively biasing the voltages of the well areas of an integrated circuit. In one embodiment, the well bias circuitry includes a switching cell located in a row of cells of the integrated circuit for selectively coupling a voltage supply line to a well bias line. The switching cell may include two level shifters, each for providing a voltage to a gate of a coupling transistor to make the coupling transistor non conductive in response to an enable signal. The switching cells may be sequentially coupled such that the coupling transistors of each of the switching cells are not made conductive at the same time so as to reduce inrush current due to changing the well bias from a well bias voltage to a supply voltage. In one example, the switching cells may include delay circuitry for delaying the change in state of the enable signal before being provided to the next switching cell.
摘要:
In accordance with a first aspect, a binding assay comprises a machine-readable storage medium which supports a molecular receptor (22). In accordance with a second aspect, a support member (50) supports first (22) and second (24) molecular receptors and first (26) and second (28) data identifying the molecular receptors (22,24). In accordance with a third aspect, a support member has a first annular portion (106) to support molecular receptors and a second annular portion (108) to support machine-readable data identifying the plurality of molecular receptors.
摘要:
A flexible electro-optic circuit board (20) includes a polymer circuit board (22) and a polymer optical backplane (34). The polymer circuit board (22) includes a plurality of circuit elements (50, 52). The polymer optical backplane (34) has a plurality of optical transmission lines (44). A plurality of optical vias (30) couple the polymer circuit board (22) to the polymer optical backplane (34).
摘要:
A data transmitter (12) transmits parallel data as light pulses over multiple optical channels (14). A data receiver (16) converts the light pulses back to a voltage level and compares the voltage level to a reference capacitor voltage (42). The capacitor voltage should maintain a mid-range value for proper noise margin in detecting logic ones and logic zeroes. Any long series of consecutive logic ones or zeroes causes the capacitor voltage to charge or discharge toward the same level as the data voltage, which causes data errors. To prevent the data errors, the data is encoded (18) by inverting certain bits to break up the long series of consecutive logic states. The encoding information is transmitted as a transmitted clock to the data receiver over another fiber optic channel. The decoding information is retrieved (20) so that the encoded data can be converted back to proper logic states.