Abstract:
A process for directly hydrating linear olefins having up to 4 carbon atoms to form alcohols, catalyzed by a novel class of highly siliceous zeolites exemplified by HZSM-5.
Abstract:
A process is provided for the desulfurization of residual oil by(a) separating the residual oil into a first and a second fraction;(b) reacting the first fraction with hydrogen over a hydrodesulfurization catalyst in a first reaction zone at hydrodesulfurization conditions such that a liquid effluent of lower sulfur content than the residual oil is obtained;(c) combining the hydrodesulfurization liquid effluent with the second residual oil fraction; and(d) reacting the resultant mixture over a hydrogenation/dehydrogenation catalyst in a second reaction zone at hydrogen transfer conditions.This process provides for desulfurization of residual oils at lower hydrogen consumptions than conventional processes.
Abstract:
Synthesis gas comprising a mixture of carbon monoxide and hydrogen is derived from fossil fuels and catalytically converted in a first reaction zone to a mixture of methanol and dimethyl ether which in turn is converted in a separate reaction zone in contact with a crystalline aluminosilicate zeolite catalyst having a silica to alumina ratio of at least about 12 and a constraint index of about 1 to 12, and preferably a crystal density in the hydrogen form of not substantially below about 1.6 grams per cubic centimeter to a product which is resolved into a high octane gasoline fraction, a light hydrocarbon gas fraction which may be liquefied and a hydrogen-rich gaseous by-product which is recycled to the conversion of fossil fuels to synthesis gas or may be otherwise used.
Abstract:
Synthesis gas is contacted with an intimate mixture of a carbon monoxide hydrogen reduction catalyst, comprising a methanol synthesis catalyst in combination with a selective class of acidic crystalline aluminosilicate having a silica/alumina ratio greater than 12, a pore dimension greater than about 5 Angstroms to produce hydrocarbon mixtures useful in the manufacture of heating fuels, gasoline, aromatic hydrocarbons, and chemicals intermediates.
Abstract:
A catalytic process is provided for converting a charge consisting essentially of methanol, dimethyl ether or mixtures thereof to a hydrocarbon product rich in ethylene and propylene by contact, under conversion conditions, with a catalyst comprising a crystalline aluminosilicate zeolite characterized by pores, the major dimension of which is less than 6 Angstroms and the capability, under said conditions, of producing less than 20 weight percent methane in said hydrocarbon product.
Abstract:
A lower alcohol and/or ether feed is selectively converted to a mixture of light olefins, including ethylene and propylene, by catalytic contact of the feed, for example methanol or dimethyl ether, at subatmospheric partial pressure, with certain crystalline aluminosilicate zeolite catalysts exemplified by HZSM-5. Low durene-content gasoline or gasoline blending stock are made from methanol or dimethyl ether by this process.
Abstract:
Reacting mixtures of difficultly convertible aliphatic organic oxygenate compounds, such as short chain aldehydes, carboxylic acids or carbohydrates with easily convertible aliphatic alcohols, ethers, acetals and analogs thereof over a crystalline aluminosilicate zeolite having a silica to alumina ratio of at least about 12 and a constraint index of about 1 to 12, at elevated temperatures, 0.5 to 50 LHSV and 1 to 200 atmospheres to produce a product comprising water, full range highly aromatic hydrocarbon gasoline and light aliphatic hydrocarbon gases having an improved production of C.sub.6 and C.sub.10 monocyclic aromatic hydrocarbons.
Abstract:
A zeolite catalyst suitable for use in shape-selective hydrocarbon conversion processes. The catalyst is modified by incorporation therein of a hydrogenation-dehydrogenation functional metal, followed by gradient selectivation with an organosilicon compound under conversion conditions, wherein the gradient selectivation conditions are characterized by a progressive temperature gradient. The use of a progressive temperature gradient during the in situ selectivation procedure unexpectedly yields a catalyst in which the hydrogenation-dehydrogenation function is stabilized, thereby enabling long duration hydrocarbon conversion processes with low by-product make.
Abstract:
The present invention provides a bisglycoluril derivative composition useful for selectively covering methane from a gas stream including carbon dioxide.
Abstract:
There is provided a method for preparing an acidic solid oxide having a reduced particle density, where the acidic solid oxide comprises a Group IVB metal oxide modified with an anion or oxyanion of a Group VIB metal. An example of this acidic solid oxide is zirconia modified with tungstate. The acidic solid oxide having a reduced particle density is prepared by coprecipitating the Group IVB metal oxide along with the anion or oxyanion of the Group VIB metal in the presence of a salt. This acidic solid oxide is particularly effective as a paraffin isomerization catalyst.