Abstract:
High surface area metal-containing catalysts are prepared by dispersing a thermally decomposable metal compound in a hydrocarbon oil having a Conradson carbon content of up to about 50 weight percent, the thermally decomposable metal compound being added in an amount sufficient to obtain a specified ratio of atoms of Conradson carbon of the oil chargestock to atoms of metal constituent of the thermally decomposable compound, heating the compound in the presence of a gas comprising either hydrogen or hydrogen sulfide or hydrogen and hydrogen sulfide to form a solid high surface area catalyst within the oil, and recovering the resulting high surface area catalyst. The metal constituent of the thermally decomposable metal compound may be a metal of Groups II, III, IV, V, VIB, VIIB, VIII or mixtures thereof. The high surface area solids are suitable as catalysts, catalyst supports or catalyst components for use in hydrocarbon treating processes and in chemical processes.
Abstract:
A combination slurry hydroconversion, coking and coke gasification process is provided wherein solid fines having an average particle size of less than 10 microns in diameter or the ashes thereof recovered from a gaseous product derived from the coke gasification are used as a catalyst in the hydroconversion stage in combination with a catalyst produced from an oil soluble metal compound in situ in the chargestock of the hydroconversion zone.
Abstract:
A catalytic hydroconversion process for a hydrocarbonaceous oil is effected by dissolving an oil-soluble metal compound in the oil, converting the compound to a solid, non-colloidal catalyst within the oil and reacting the oil containing the catalyst with hydrogen. Preferred compounds are molybdenum compounds.
Abstract:
A heavy hydrocarbonaceous oil is converted to lower boiling hydrocarbon products by treatment with hydrogen in the presence of a catalyst comprising a metal phthalocyanine and a particulate iron component.
Abstract:
A catalytic hydroconversion process is effected by reacting with hydrogen a heavy hydrocarbonaceous oil containing a catalyst comprising an iron component and a catalytically active other metal component prepared by dissolving an oil soluble metal compound in the oil and converting the metal compound in the oil to the corresponding catalytically active metal component. Preferred oil soluble compounds are molybdenum compounds.
Abstract:
The present invention relates to catalysts for hydrodesulfurizing naphtha streams. The catalysts are comprised of a suitable support material, and about 1 to about 10 wt. % MoO.sub.3, about 0.1 to about 5 wt. % CoO supported on a suitable support material. They are also characterized as having an average medium pore diameter from about 60 .ANG. to 200 .ANG., a Co/Mo atomic ratio of about 0.1 to about 1.0, a MoO.sub.3 surface concentration of about 0.5.times.10.sup.-4 to about 3.0.times.10.sup.-4 g MoO.sub.3 /m.sup.2, and an average particle size of less than about 2.0 mm in diameter.
Abstract:
A hydrotreating process using a sulfided catalyst composition comprised of at least one Group VIII metal and at least one Group VI metal on an inorganic oxide support, which sulfided catalyst is derived from a catalyst precursor comprised of salts and/or complexes of a Group VIII metal(s) with a Group VI metal heteropolyacid on an inorganic oxide support material, wherein the concentration of Group VIII metal ranges from about 2 to 20 wt. %, and the concentration of Group VI metal ranges from 5 to 50 wt. %, which percents are on support and which catalyst composition is substantially free of free water.
Abstract:
A catalyst composition having superior hydrotreating activity which catalyst is comprised of salts and/or complexes of Group VIII metals with Group VI metal heteropolyacids on an inorganic oxide support material, wherein the concentration of Group VIII metal ranges from about 2 to 20 wt. %, and the concentration of Group VI metal ranges from 5 to 50 wt. %, which percents are on support and which catalyst composition is substantially free of free water.
Abstract:
Hydrogen is produced by reacting carbon monoxide with steam at a temperature of at least 200.degree.F. in the presence of a supported catalyst containing: (1) at least one alkali metal compound derived from an acid having an ionization constant below 1 .times. 10.sup..sup.-3, (2) a metallic hydrogenation-dehydrogenation material, and (3) a halogen moiety. The ratio of metal component to alkali metal compound, each calculated on the basis of the oxide thereof, ranges from 0.0001 to about 10 parts by weight per part by weight of the alkali metal compound. The halide constituent is present in amounts in excess of about 0.01 weight %, based on total catalyst. A preferred catalyst composition comprises potassium carbonate, a mixture of cobalt and molybdenum oxides and combined chlorine contained on an alumina support.
Abstract:
The present invention relates to the preparation of catalysts for heteroatom removal, particularly sulfur, from petroleum and synthetic fuel feedstocks. The catalyst is comprised of at least one Group VIII metal, and at least one Group VI metal, on a refractory support. The catalyst is prepared by: impregnating an inorganic oxide support material with a Group VI heteropolyacid; treating said impregnated support with an aqueous solution of a reducing agent which is capable of at least partially reducing the Group VI metal of the heteropolyacid; drying said treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; impregnating the treated support with a Group VIII metal salt of an acid having an acidity less than that of the Group VI heteropolyacid; drying said impregnated treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; and sulfiding said impregnated support, thereby forming the catalysts.