Abstract:
A magnetoresistive stack includes a seed region formed above a base region, a fixed magnetic region formed above the seed region and an intermediate region positioned between the fixed magnetic region and a free magnetic region. The base region may be formed of a material having a lower standard free energy of oxidation than iron.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/−10%) and less than or equal to 60 Angstroms (+/−10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/−10%) or 30-50 atomic percent (+/−10%).
Abstract:
A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/−10%) and less than or equal to 60 Angstroms (+/−10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/−10%) or 30-50 atomic percent (+/−10%).
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
Abstract:
A magnetoresistive memory element (for example, a spin-torque magnetoresistive memory element), includes first and second dielectric layers, wherein at least one of the dielectric layers is a magnetic tunnel junction. The memory element also includes a free magnetic layer having a first surface in contact with the first dielectric layer and a second surface in contact with the second dielectric layer. The free magnetic layer, which is disposed between the first and second dielectric layers, includes (i) a first high-iron interface region located along the first surface of the free magnetic layer, wherein the first high-iron interface region has at least 50% iron by atomic composition, and (ii) a first layer of ferromagnetic material adjacent to the first high-iron interface region, the first high-iron interface region between the first layer of ferromagnetic material and the first surface of the free magnetic layer.
Abstract:
A spin-torque magnetoresistive memory element has a high magnetoresistance and low current density. A free magnetic layer is positioned between first and second spin polarizers. A first tunnel barrier is positioned between the first spin polarizer and the free magnetic layer and a second tunnel barrier is positioned between the second spin polarizer and the free magnetic layer. The magnetoresistance ratio of the second tunnel barrier has a value greater than double the magnetoresistance ratio of the first tunnel barrier.
Abstract:
In one aspect, the present inventions are directed to a magnetoresistive structure having a tunnel junction, and a process for manufacturing such a structure. The tunnel barrier may be formed between a free layer and a fixed layer in a plurality of repeating process of depositing a metal material and oxidizing at least a portion of the metal material. Where the tunnel barrier is formed by deposition of at least three metal materials interceded by an associated oxidization thereof, the oxidation dose associated with the second metal material may be greater than the oxidation doses associated with the first and third metal materials. In certain embodiments, the fixed layer may include a discontinuous layer of a metal, for example, Ta, in the fixed layer between two layers of a ferromagnetic material.
Abstract:
An MRAM bit (10) includes a free magnetic region (15), a fixed magnetic region (17) comprising an antiferromagnetic material, and a tunneling barrier (16) comprising a dielectric layer positioned between the free magnetic region (15) and the fixed magnetic region (17). The MRAM bit (10) avoids a pinning layer by comprising a fixed magnetic region exhibiting a well-defined high Hflop using a combination of high Hk (uniaxial anisotropy), high Hsat (saturation field), and ideal soft magnetic properties exhibiting well-defined easy and hard axes.