Abstract:
An image sensor including a substrate of a semiconductor material having first and second opposite surfaces; at least one photodiode formed in the substrate on the first surface side and intended to be lit through the second surface; a stacking of insulating layers covering the first surface; and conductive regions formed at the stacking level. The sensor further includes a transparent insulating layer at least partly covering the second surface; a transparent conductive layer at least partly covering the transparent insulating layer; and circuitry for biasing the conductive layer.
Abstract:
A photodetector including a photodiode formed in a semiconductor substrate and a waveguide element formed of a block of a high-index material extending above the photodiode in a thick layer of a dielectric superposed to the substrate, the thick layer being at least as a majority formed of silicon oxide and the block being formed of a polymer of the general formula R1R2R3SiOSiR1R2R3 where R1, R2, and R3 are any carbonaceous or metal substituents and where one of R1, R2, or R3 is a carbonaceous substituent having at least four carbon atoms and/or at least one oxygen atom.
Abstract translation:一种光电探测器,其包括形成在半导体衬底中的光电二极管,以及波导元件,所述波导元件由高折射率材料块形成,所述波导元件在与所述衬底叠加的电介质的厚层中的所述光电二极管之上延伸,所述厚层至少大部分形成 的氧化硅,该嵌段由通式为R 1,R 2,R 3,SiOS 1 R 1,R 2,R 3,R 3,R 3, R 2 R 3,其中R 1,R 2,和R 3, 是任何碳质或金属取代基,其中R 1,R 2或R 3中的一个是具有至少四个碳原子的碳取代基 和/或至少一个氧原子。
Abstract:
An integrated circuit having a photosensitive cell with an entry face, a photosensitive element and at least two elements forming a light guide and placed between the entry face and the photosensitive element. The second element is located between the first element and the entry face such that the two elements guide the light coming from the entry face onto the photosensitive element and each element forms a light guide. The inner volume has a first surface located on the same side as the photosensitive element, a second surface located on the same side as the entry face, and a lateral surface joining said first surface to said second surface and separating the inner volume from the outer volume. The first surface of the inner volume of the second element has a smaller area than that of the second surface of the inner volume of the first element.
Abstract:
A photodiode comprises three superposed doped regions, namely a first doped region adjacent to a surface (S) of a semiconductor substrate, an intermediate second doped region and a third doped region in contact with the bulk of the substrate. The bulk of the substrate and the second doped region form first and second electrodes of the photodiode, respectively. The photodiode furthermore includes a third electrode in contact with the first doped region. The third electrode comprises an intermediate portion of a first electrically conducting material, placed in contact with the first doped region, and an external connection portion of a second electrically conducting material, placed in contact with the intermediate portion.
Abstract:
A method of controlling a MOS-type photodetector includes transferring electrical charge between a photodiode (12) and a sensing node (3) via a transfer transistor. The electrical potential of the sensing node (3) takes an extreme value when a maximum quantity of electrical charge is stored on the sensing node (3). During the electrical charge transfer, an electrical potential is applied to the gate electrode of a transfer transistor in such a way that the electrical potential of the channel (2) of the transfer transistor is brought to a value equal to the extreme value of the electrical potential of the sensing node (3) multiplied by a number greater than or equal to unity.
Abstract:
An integrated imaging device includes a silicon layer provided over a dielectric multilayer. The dielectric multilayer includes a top silicon-dioxide layer, an intermediate silicon-nitride layer and a bottom silicon-dioxide layer. Imaging circuitry is formed at a frontside of the silicon layer. An isolating structure surrounds the imaging circuitry and extends from the frontside through the silicon layer and top silicon-dioxide layer into and terminating within the intermediate silicon-nitride layer. A filter for the imaging circuitry is mounted to a backside of the bottom silicon-dioxide layer. The isolating structure is formed by a trench filled with a dielectric material.
Abstract:
A method of fabricating an image sensor includes the steps of: forming at least two photosites in a semiconductor substrate; forming a trench between the photosites; forming a thin liner on at least the sidewalls of the trench; depositing a conductive material having a first refractive index in the trench; and forming a region surrounded by the conductive material and having a second refractive index lower than the first index of refraction within the conductive material in the trench.
Abstract:
A process for producing a microelectronic device includes producing a first semiconductor substrate which includes a first layer and a second layer present between a first side and a second side of the substrate. First electronic components and an interconnecting part are produced on and above the second side. The substrate is then thinned by a first selective etch applied from the first side and stopping on the first layer followed by a second selective etch stopping on the second layer. A second substrate is attached over the interconnecting part. The electronic components may comprise optoelectronic devices which are illuminated through the second layer.
Abstract:
A composite engineered wood material piece and its method of fabrication is described. The wood material piece comprises a top wood layer secured to a substrate layer by a binder. The substrate layer has a plurality of grooves formed therein from a bottom surface thereof to enhance the flexibility of the wood material piece. The grooves are spaced from one another by one or more predetermined spaced intervals and have one or more predetermined depth and width calculated to substantially eliminate the effects of telegraphy of the grooves on a top finished surface of the top wood layer.