Abstract:
Methods for making high voltage IC devices utilizing a fin-type process and resulting devices are disclosed. Embodiments include forming two pluralities of silicon fins on a substrate layer, separated by a space, wherein adjacent silicon fins are separated by a trench; forming an oxide layer on the substrate layer and filling a portion of each trench; forming two deep isolation trenches into the oxide layer and the substrate layer adjacent to the two pluralities of silicon fins; forming a graded voltage junction by implanting a dopant into the substrate layer below the two pluralities of silicon fins; forming a gate structure on the oxide layer and between the two pluralities of silicon fins; implanting a dopant into and under the two pluralities of silicon fins, forming source and drain regions; and forming an epitaxial layer onto the two pluralities of silicon fins to form merged source and drain fins.
Abstract:
Co-fabrication of a radio-frequency (RF) semiconductor device with a three-dimensional semiconductor device includes providing a starting three-dimensional semiconductor structure, the starting structure including a bulk silicon semiconductor substrate, raised semiconductor structure(s) coupled to the substrate and surrounded by a layer of isolation material. Span(s) of the layer of isolation material between adjacent raised structures are recessed, and a layer of epitaxial semiconductor material is created over the recessed span(s) of isolation material over which another layer of isolation material is created. The RF device(s) are fabricated on the layer of isolation material above the epitaxial material, which creates a local silicon-on-insulator, while the three-dimensional semiconductor device(s) can be fabricated on the raised structure(s).
Abstract:
Approaches for altering the threshold voltage (e.g., to zero threshold voltage) in a fin-type field effect transistor (FinFET) device are provided. In embodiments of the invention, a first N+ region and a second N+ region are formed on a finned substrate that has a p-well construction. A region of the finned substrate located between the first N+ region and the second N+ region is doped with a negative implant species to form an n-well. The size and/or composition of this n-well region can be adjusted in view of the existing p-well construction of the substrate device to change the threshold voltage of the FinFET device (e.g., to yield a zero threshold voltage FinFET device).
Abstract:
Aspects of the present invention relate to an approach for implanting and forming a polysilicon resistor with a single implant dose. Specifically, a mask having a set of openings is formed over a resistor surface. The set of openings are typically formed in a column-row arrangement according to a predetermined pattern. Forming the mask in this manner allows the resistor surface to have multiple regions/zones. A first region is defined by the set of openings in the mask, and a second region is defined by the remaining portions of the mask. The resistor is then subjected to a single implant dose via the openings. Implanting the resistor in this manner allows the resistor to have multiple resistance values (i.e., a first resistance value in the first region, and a second resistance value in the second region).
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
Abstract:
Structures for switches and methods for forming structures that include a switch. A first well and a section well are arranged in a substrate. Trench isolation regions are arranged in the substrate to define multiple active device regions. Each of the active device regions includes a section of the first well that is surrounded by the trench isolation regions. The second well has an opposite conductivity type from the first well. The active device regions and the trench isolation regions are arranged between the top surface of the substrate and the second well, and the second well is contiguous with the trench isolation regions.
Abstract:
One device disclosed herein includes, among other things, first and second conductive features embedded in a first dielectric layer, a cap layer positioned above the first dielectric layer, a ballistic transport material contacting the first conductive member and positioned above a portion of the first dielectric layer, and first and second contacts contacting the first and second conductive features.
Abstract:
Methods, apparatus, and systems for forming a semiconductor substrate comprising a well region containing a first impurity; forming a gate on the semiconductor substrate above the well region; implanting a second impurity, of a type opposite the first impurity, in the well region on each side of the gate and to a depth above a bottom of the well region, to form two second impurity regions each having a first concentration; removing an upper portion of each second impurity region, to yield two source/drain (S/D) cavities above two depletion regions; and growing epitaxially a doped S/D region in each S/D cavity, wherein each S/D region comprises the second impurity having a second concentration greater than the first concentration.
Abstract:
A first layer on a substrate includes an insulator material portion adjacent an energy-reactive material portion. The energy-reactive material portion evaporates upon application of energy during manufacturing. Processing patterns the first layer to include recesses extending to the substrate in at least the energy-reactive material portion. The recesses are filled with a conductor material, and a porous material layer is formed on the first layer and on the conductor material. Energy is applied to the porous material layer to: cause the energy to pass through the porous material layer and reach the energy-reactive material portion; cause the energy-reactive material portion to evaporate; and fully remove the energy-reactive material portion from an area between the substrate and the porous material layer, and this leaves a void between the substrate and the porous material layer and adjacent to the conductor material.
Abstract:
Field-effect transistor structures for a laterally-diffused metal-oxide-semiconductor (LDMOS) device and methods of forming a LDMOS device. First and second fins are formed that extend vertically from a top surface of a substrate. A body region is arranged partially in the substrate and partially in the first fin. A drain region is arranged partially in the substrate, partially in the first fin, and partially in the second fin. The body and drain regions respectively have opposite first and second conductivity types. A source region of the second conductivity type is located within the first well in the first fin, and a gate structure is arranged to overlap with a portion of the first fin. The first fin is separated from the second fin by a cut extending vertically to the top surface of the substrate. An isolation region is arranged in the cut between the first fin and the second fin.