Abstract:
One aspect of the disclosure provides a control device that is located inside the passenger compartment of a vehicle. The control device may include a portable computing device configured to execute software that effectively enables passengers to use a touch screen (or another input device) to perform control actions for the vehicle that would otherwise take a flip of a switch, turning of a knob, or pressing of a pedal. For example, the portable computing device may be used to steer the vehicle or apply the brakes of the vehicle. The capabilities of the portable computing device are subject to location-specific permissions. The portable computing device, for example, may be allowed to steer the vehicle only when it is located in the area of the vehicle's driver seat.
Abstract:
Systems and methods are described that include generating a virtual environment for display in a head-mounted display device. The virtual environment may include at least one three-dimensional virtual object having a plurality of volumetric zones configured to receive virtual contact. The method may also include detecting a plurality of inputs corresponding to a plurality of actions performed in the virtual environment on the at least one three-dimensional virtual object. Each action corresponds to a plurality of positions and orientations associated with at least one tracked input device. The method may include generating, for each action and while detecting the plurality of inputs, a plurality of prediction models and determining based on the plurality of prediction models in which of the plurality of volumetric zones the at least one tracked input device is predicted to virtually collide.
Abstract:
A system and method of operating an audio visual system generating a virtual immersive experience may include an electronic user device in communication with a tracking device that may track a user's physical movement in a real world space and translate the tracked physical movement into corresponding movement in the virtual world generated by the user device. The system may detect when a user and the user device are approaching a boundary of a tracking area and automatically initiate a transition out of the virtual world and into the real world. A smooth, or graceful, transition between the virtual world and the real world as the user encounters this boundary may avoid disorientation which may occur as a user continues to move in the real world, while motion appears to have stopped upon reaching the tracking boundary.
Abstract:
In at least one general aspect, a method can include determining a physics parameter based at least in part on a scale of user relative to an object in a virtual reality environment, applying a physics rule to an interaction between the user and the object in the virtual reality environment based on the physics parameter, and modifying the physics parameter based at least in part on a relative change in scale between the user and the object.
Abstract:
Content packs are provided for identifying a plurality of authorized web-based resources, wherein a web browser is configured to prevent access to web-based resources not identified by content packs installed in the web browser. Accordingly one or more of content packs are selected and installed in the web browser, and one or more featured resources are identified from a plurality of authorized web-based resources provided by the installed content packs. An account access page provided by the web browser is automatically configured with one or more access links corresponding to the one or more featured resources, with each featured resource providing a web-based entry point to one or more web-based resources made available by the installed one or more content packs.
Abstract:
Methods and apparatus to use predicted actions in VR environments are disclosed. An example method includes predicting a predicted time of a predicted virtual contact of a virtual reality controller with a virtual musical instrument, determining, based on at least one parameter of the predicted virtual contact, a characteristic of a virtual sound the musical instrument would make in response to the virtual contact, and initiating producing the sound before the predicted time of the virtual contact of the controller with the musical instrument.
Abstract:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.