Abstract:
Techniques for controlling a bottom hole assembly (BHA) include determining a first candidate BHA control signal; generating an input to a BHA control, the input comprising a perturbation signal superimposed on the first candidate BHA control signal; controlling the BHA using the input to the BHA control; determining a change in an objective value as a function of the perturbation signal, based on a received downhole sensor measurement; and generating, based on the change in the objective value, a second candidate BHA control signal.
Abstract:
An example method for drilling automation may comprise generating a model of a drilling system based, at least in part, on a first set of downhole measurements. The model may accept drilling parameters of the drilling system as inputs. A rate of penetration for the drilling system may be determined based, at least in part on the model. The model may be simulated using a first set of values for the drilling parameters, and a control policy for the drilling system may be calculated based, at least in part, on the rate of penetration and the results of the simulation. A control signal to the drilling system may be generated based, at least in part, on the control policy.
Abstract:
A method of estimating a state of a rotary steerable drilling system comprising applying a control input to a rotary steerable drilling system, sensing an actual output of the rotary steerable drilling system, inputting the control input into a mathematical model of the rotary steerable drilling system, receiving an estimated output of the rotary steerable drilling system from the mathematical model, generating an error compensation signal based on a difference between the actual output and the estimated output, and applying the error compensation signal to the mathematical model.
Abstract:
Systems comprising a main tubular coupled to a pump and extending from a surface into a subterranean formation, wherein produced bulk fluid is pumped to the surface, and wherein the bulk fluid comprises at least water and a hydrocarbon, and has certain constituent parameters; a storage container for retaining the bulk fluid; a sampling tubular in fluid communication with the main tubular for sampling the bulk fluid, thereby forming at least one sampled fluid; and a dosing system coupled to the sampling tubular and configured to receive the sampled fluid, the dosing system configured to determine a constituent parameter of the sampled fluid, identify a type and concentration of separating surfactant to include in the bulk fluid to obtain a hydrophilic-lipophilic deviation (HLD) substantially equal to 0, and introduce the identified type and concentration of the separating surfactant into the storage container retaining the bulk fluid.
Abstract:
Methods and systems are provided for optimizing a drill path from the surface to a target area below the surface. A method for operating an automated drilling program may comprise drilling to a target location along a drill path, updating a drilling path model based at least on data obtained during the state of drilling to the target location, creating a modified drill path to the target location based on at least the drilling path model in real-time as the step of drilling to the target location along the drill path is being performed, and drilling to the target location along the modified drill path.
Abstract:
In accordance with some embodiments of the present disclosure, systems and methods for a gain scheduling based toolface control system for a rotary steerable drilling tool are disclosed. The method includes determining a desired toolface of a drilling tool, calculating a toolface error by determining a difference between a current toolface and the desired toolface, determining a plurality of operating points of the drilling tool, selecting one of the plurality of operating points based on a current operating point of the drilling tool, determining a model based on the selection, calculating a correction to correct the toolface error, the correction based on the model, transmitting a signal to the drilling tool such that the signal adjusts the current toolface based on the correction, and drilling a wellbore with a drill bit oriented at the desired toolface.
Abstract:
A directional drilling system includes a bottomhole assembly having a drill bit and a steering tool configured to adjust a drilling direction in real-time. The system also includes a first feedback loop that provides a first steering control signal to the steering tool, and a second feedback loop that provides a second steering control signal to the steering tool. The system also includes a set of sensors to measure at least one of strain and movement at one or more points along the bottom-hole assembly during drilling, wherein the first and second steering control signals are based in part on the strain or movement measurements.
Abstract:
Disclosed embodiments include systems and methods for estimating real-time bit forces experienced on a drill bit and decoupling bit force disturbances. Real-time bit forces can be estimated based on bit force observers using measurements from downhole sensor subs. Model-based observers that adopted to estimate the bit force from downhole sensor sub measurements. Strain and torque measurements as measured by the sensor subs are used to estimate bit force and bit torque. These measurements can be observed using an effective observer design with the estimated bit force and bit torque based on sensor sub measurements to track the real bit force and bit torque. Observations of estimated bit forces and identified bit force disturbances can be used perform drilling dynamics modeling and identify the occurrence of negative drilling events.
Abstract:
Systems comprising a main tubular coupled to a pump and extending from a surface into a subterranean formation, wherein produced bulk fluid is pumped to the surface, and wherein the bulk fluid comprises at least water and a hydrocarbon, and has certain constituent parameters; a storage container for retaining the bulk fluid; a sampling tubular in fluid communication with the main tubular for sampling the bulk fluid, thereby forming at least one sampled fluid; and a dosing system coupled to the sampling tubular and configured to receive the sampled fluid, the dosing system configured to determine a constituent parameter of the sampled fluid, identify a type and concentration of separating surfactant to include in the bulk fluid to obtain a hydrophilic-lipophilic deviation (HLD) substantially equal to 0, and introduce the identified type and concentration of the separating surfactant into the storage container retaining the bulk fluid.
Abstract:
An example method for drilling automation may comprise generating a model of a drilling system based, at least in part, on a first set of downhole measurements. The model may accept drilling parameters of the drilling system as inputs. A rate of penetration for the drilling system may be determined based, at least in part on the model. The model may be simulated using a first set of values for the drilling parameters, and a control policy for the drilling system may be calculated based, at least in part, on the rate of penetration and the results of the simulation. A control signal to the drilling system may be generated based, at least in part, on the control policy.