Abstract:
An on-chip baseband-to-RF interface includes a receive/transmit section, a control section, and a clock section. The receive/transmit section, when in a receive mode, provides the stream of inbound symbols from the RF circuit to the baseband processing module and, when in a transmit mode, provides the stream of outbound symbols from the baseband processing module to the RF circuit. The control section provides a control communication path between the baseband processing module and the RF circuit. The clock section provides a clock communication path between the baseband processing module and the RF circuit.
Abstract:
A radio frequency (RF) transmitter front-end includes a digital to analog conversion module and a power amplifier module. The digital to analog conversion module is coupled to convert amplitude information into analog amplitude adjust signals when a first mode is active and is coupled to convert power level information into analog power level signals when a second mode is active. The power amplifier module is coupled to amplify first phase modulated RF signals in accordance with the analog amplitude adjust signals to produce first outbound RF signals when the first mode is active and is coupled to amplify second phase modulated RF signals in accordance with the analog power level signals to produce second outbound RF signals when the second mode is active.
Abstract:
Methods and apparatus for calibrating a transitional loop, such as a phase locked loop, are disclosed. An example method includes performing an open loop calibration of a voltage controlled oscillator (VCO). The open loop calibration includes tuning the output oscillation frequency of the VCO to within a predetermined range of frequencies. The example method further includes determining a voltage offset and a gain error of an analog to digital converter (ADC) coupled with the phase locked loop. The example method also includes determining a gain offset of the open loop calibrated VCO using the voltage offset and the gain error of the ADC. In the example method, a signal provided by a charge pump of the PLL is adjusted based on the determined gain offset.
Abstract:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
Various embodiments are disclosed relating to a wireless transceiver. In an example embodiment, a wireless transceiver may include a transmitter adapted to output a signal at an image frequency (e.g., a simulated image) for a channel during a first mode (e.g., calibration mode) of operation. The wireless transceiver also includes a receiver adapted to receive, via loopback from the transmitter, the (e.g., simulated) image frequency signal and to determine digitally a receiver in-phase/quadrature-phase (I/Q) signal calibration adjustment based on the (simulated) image frequency signal to improve a match in amplitude and a predetermined phase shift between I and Q signals of the receiver during the first (e.g., calibration) mode of operation. The I/Q calibration adjustment may be applied to received signals during a second mode (e.g., operation mode) of operation to improve image rejection.
Abstract:
Various embodiments are disclosed relating to techniques to reduce spurs in wireless transceivers. In an example embodiment, a first fractional-N divide ratio for a first frequency synthesizer may be set based on a selected channel. A second fractional-N divide ratio for a second frequency synthesizer may be set to a fixed value independent of the selected channel. The second fractional-N divide ratio may be set to a value that is sufficiently distant from an integer value so as to decrease the likelihood of at least some type(s) of spurs.
Abstract:
A radio transceiver includes amplification circuitry that is coupled to receive a down converted signal and to provide infinite rejection of any DC component added by the down conversion circuitry. Specifically, an amplification stage includes a voltage integrator that is coupled within a feedback loop of the amplification circuitry to produce a DC charge having a magnitude that equals the added DC component but a polarity that is opposite. Accordingly, the voltage produced by the voltage integrator is added to the signal received from the down conversion circuitry to cause the amplification circuitry to merely amplify the wireless communication signals characterized by a frequency of oscillation. Logic circuitry is used for selectively coupling the voltage integrator to an output port of the amplification circuitry.
Abstract:
Methods and systems for increasing an amplifier circuit's Q factor are disclosed herein. The method may comprise coupling a first LC tank to a source of a single switching transistor and coupling a second LC tank to a drain of the single switching transistor. A gate of the single switching transistor may be controlled by an amplifier core coupled to the first LC tank and the second LC tank. A resistance of the first LC tank and the second LC tank may be decreased by about one half, which increases the Q factor by about two. The gate of the single switching transistor may be controlled by a control signal generator coupled to the amplifier core. The first LC tank and/or the second LC tank may be tuned to a frequency of about 3.4 GHz to 4 GHz. The single switching transistor may comprise an NMOS transistor.
Abstract:
A logic circuit incorporates symmetric inputs and/or a symmetric output. The logic circuit may include symmetric input circuits such that each input signal may be processed by a circuit that provides substantially identical rise times and fall times. The input circuits may provide symmetric loading of the input signals by providing a substantially identical circuit configuration for each input signal. The logic circuit may include a symmetric output circuit such that the output signals generated by the output circuit may have substantially identical rise times and fall times. Each leg of a differential output circuit may incorporate a substantially identical circuit configuration.
Abstract:
Methods and systems for processing signals are disclosed herein. In one aspect of the invention a circuit for processing signals may comprise a triple well (TW) NMOS transistor coupled to an amplifier core. The TW NMOS transistor may track process and temperature variations (PVT) of at least one NMOS transistor within the amplifier core. A drain of the TW NMOS transistor may be coupled to a first inductor and the first inductor may be coupled to a first voltage source. The first voltage source may generate a standard voltage of about 1.2V. A source of the TW NMOS transistor may be coupled to a second inductor and the second inductor may be coupled to the first voltage source. A gate of the TW NMOS transistor may be coupled to a second voltage source, where the second voltage source may generate a standard voltage of about 2.5V.