GRAPHENE SENSOR
    41.
    发明申请
    GRAPHENE SENSOR 有权
    石墨传感器

    公开(公告)号:US20150137078A1

    公开(公告)日:2015-05-21

    申请号:US14604959

    申请日:2015-01-26

    Abstract: A method for forming a sensor includes forming a channel in substrate, forming a sacrificial layer in the channel, forming a sensor having a first dielectric layer disposed on the substrate, a graphene layer disposed on the first dielectric layer, and a second dielectric layer disposed on the graphene layer, a source region, a drain region, and a gate region, wherein the gate region is disposed on the sacrificial layer removing the sacrificial layer from the channel.

    Abstract translation: 一种用于形成传感器的方法,包括在衬底中形成通道,在通道中形成牺牲层,形成具有设置在衬底上的第一介电层的传感器,设置在第一电介质层上的石墨烯层,以及设置在第二电介质层 在石墨烯层上,源区域,漏极区域和栅极区域,其中栅极区域设置在牺牲层上,从沟道去除牺牲层。

    Self-assembly of nanostructures
    45.
    发明授权

    公开(公告)号:US10600965B2

    公开(公告)日:2020-03-24

    申请号:US15488762

    申请日:2017-04-17

    Abstract: Structures and methods that include selective electrostatic placement based on a dipole-to-dipole interaction of electron-rich carbon nanotubes onto an electron-deficient pre-patterned surface. The structure includes a substrate with a first surface having a first isoelectric point and at least one additional surface having a second isoelectric point. A self-assembled monolayer is selectively formed on the first surface and includes an electron deficient compound including a deprotonated pendant hydroxamic acid or a pendant phosphonic acid group or a pendant catechol group bound to the first surface. An organic solvent can be used to deposit the electron rich carbon nanotubes on the self-assembled monolayer.

    Heterogeneous nanostructures for hierarchal assembly

    公开(公告)号:US10559755B2

    公开(公告)日:2020-02-11

    申请号:US16266580

    申请日:2019-02-04

    Abstract: A method of making a carbon nanotube structure includes depositing a first oxide layer on a substrate and a second oxide layer on the first oxide layer; etching a trench through the second oxide layer; removing end portions of the first oxide layer and portions of the substrate beneath the end portions to form cavities in the substrate; depositing a metal in the cavities to form first body metal pads; disposing a carbon nanotube on the first body metal pads and the first oxide layer such that ends of the carbon nanotube contact each of the first body metal layers; depositing a metal to form second body metal pads on the first body metal pads at the ends of the carbon nanotube; and etching to release the carbon nanotube, first body metal pads, and second body metal pads from the substrate, first oxide layer, and second oxide layer.

    Plasmonic Non-Dispersive Infrared Gas Sensors

    公开(公告)号:US20200041409A1

    公开(公告)日:2020-02-06

    申请号:US16653715

    申请日:2019-10-15

    Abstract: Differential, plasmonic, non-dispersive infrared gas sensors are provided. In one aspect, a gas sensor includes: a plasmonic resonance detector including a differential plasmon resonator array that is resonant at different wavelengths of light; and a light source incident on the plasmonic resonance detector. The differential plasmon resonator array can include: at least one first set of plasmonic resonators interwoven with at least one second set of plasmonic resonators, wherein the at least one first set of plasmonic resonators is configured to be resonant with light at a first wavelength, and wherein the at least one second set of plasmonic resonators is configured to be resonant with light at a second wavelength. A method for analyzing a target gas and a method for forming a plasmonic resonance detector are also provided.

    Transparent ultraviolet photodetector

    公开(公告)号:US10475948B1

    公开(公告)日:2019-11-12

    申请号:US15994510

    申请日:2018-05-31

    Abstract: A method of fabricating a visibly transparent, ultraviolet (UV) photodetector is provided. The method includes laying a first electrode onto a substrate surface, the first electrode being formed of a carbon-based, single-layer material. A block is patterned over an end of the first electrode and portions of the substrate surface. The block is formed of a visibly transparent material that is able to be deposited into the block at 75° C.-125° C. In addition, the method includes masking a section of the block and exposed sections of the first electrode. A second electrode is laid onto an unmasked section of the block with an end of the second electrode laid onto the substrate surface. The second electrode is formed of the carbon-based, single-layer material.

    RF-transistors with self-aligned point contacts

    公开(公告)号:US10396284B2

    公开(公告)日:2019-08-27

    申请号:US15585616

    申请日:2017-05-03

    Inventor: Shu-Jen Han

    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric layer on a substrate and a nanomaterial on the dielectric layer. The method also includes depositing a thin metal layer on the nanomaterial and removing a portion of the thin metal layer from a gate area. The method also includes depositing a gate dielectric layer. The method also includes selectively removing the gate dielectric layer from a source contact region and a drain contact region. The method also includes patterning a gate electrode, a source electrode, and a drain electrode.

Patent Agency Ranking