摘要:
A nanotube array and a method for producing a nanotube array. The nanotube array has a substrate, a catalyst layer, which includes one or more subregions, on the surface of the substrate and at least one nanotube arranged on the surface of the catalyst layer, parallel to the surface of the substrate. The at least one nanotube being arranged parallel to the surface of the substrate results in a planar arrangement of at least one nanotube. Therefore, the nanotube array of the invention is suitable for coupling to conventional silicon microelectronics. Therefore, according to the invention it is possible for a nanotube array to be electronically coupled to macroscopic semiconductor electronics. Furthermore, the nanotube array according to the invention may have an electrically insulating layer between the substrate and the catalyst layer. This electrically insulating layer preferably has a topography which is such that the at least one nanotube rests on the electrically insulating layer at its end sections and is uncovered in its central section. As a result of the surface of the at least one nanotube being partly uncovered, the uncovered surface of the nanotube can be used as an active sensor surface. For example, the uncovered surface of the nanotube can come into operative contact with an atmosphere which surrounds the nanotube array. The electrical resistance of a nanotube changes significantly in the presence of certain gases. Thus because the nanotube is clear and uncovered, the nanotube array can be used in many sensor applications.
摘要:
An integrated electronic component having a substrate, a metal multilayer system, which is arranged at least on regions of the substrate, and a nonconductive layer, which is arranged on the metal multilayer system and has at least one contact hole, in which at least one carbon nanotube is grown on the metal multilayer system at the bottom of the contact hole. The metal multilayer system includes a high-melting metal layer, a metal separating layer, a catalyst layer, and a final metal separating layer. The high-melting metal layer is composed of at least one of tantalum, molybdenum, and tungsten. The metal separating layer is composed of aluminum, gold, or silver. The catalyst layer is composed of at least one of iron, cobalt, nickel, yttrium, titanium, platinum, and palladium, and a combination thereof. The final metal separating layer, which is arranged above the catalyst layer, is composed of aluminum.
摘要:
To provide a personalized auction service, data pertaining to one or more of a user's accounts with different online auction service providers (OASPs), e.g., URLs of the OASPs and account access data, is maintained in a folder by an information assistance service, which is unaffiliated with the OASPs. When the user calls the information assistance service, the user's folder is retrieved. The user's OASP accounts may be accessed on behalf of the user based on the URLs of the OASPs and account access data in the user's folder. An information assistance provider including, e.g., an operator and/or a voice server, may obtain from the OASPs information associated with the user's accounts, which may concern an auction of an item desired by the user, and communicate the same to the user. The information assistance provider may participate in one such auction on behalf of the user.
摘要:
A method for treatment of hyperproliferative tissue which by exposing the hyperproliferative tissue to a sufficient quantity of a purified iridoid compound to inhibit its growth, where the iridoid compound includes a polysubstituted cyclopenta(c)dihydropyran where the cyclopenta ring is substituted at its 2′ position with a ketofuryl group, where the numbering of the fused cyclopenta(c)dihydropyran ring structure includes heterocyclic oxygen, is counterclockwise and begins at the first carbon atom counterclockwise from the cyclopenta ring so that oxygen is in the 2 position in the pyran ring. The invention also includes the mouse iridoid compounds.
摘要:
Floating gate memory cell having a first layer with first and second source/drain regions and a channel region arranged between and next to the first and second source/drain regions, and a floating gate layer arranged on the first layer, wherein the first and second source/drain regions and the floating gate layer are formed of a metallically conductive material, and the channel region is formed of an electrically insulating material.