摘要:
An integrated electronic component having a substrate, a metal multilayer system, which is arranged at least on regions of the substrate, and a nonconductive layer, which is arranged on the metal multilayer system and has at least one contact hole, in which at least one carbon nanotube is grown on the metal multilayer system at the bottom of the contact hole. The metal multilayer system includes a high-melting metal layer, a metal separating layer, a catalyst layer, and a final metal separating layer. The high-melting metal layer is composed of at least one of tantalum, molybdenum, and tungsten. The metal separating layer is composed of aluminum, gold, or silver. The catalyst layer is composed of at least one of iron, cobalt, nickel, yttrium, titanium, platinum, and palladium, and a combination thereof. The final metal separating layer, which is arranged above the catalyst layer, is composed of aluminum.
摘要:
An integrated electronic component having a substrate, a metal multilayer system, which is arranged at least on regions of the substrate, and a nonconductive layer, which is arranged on the metal multilayer system and has at least one contact hole, in which at least one carbon nanotube is grown on the metal multilayer system at the bottom of the contact hole. The metal multilayer system includes a high-melting metal layer, a metal separating layer, a catalyst layer, and a final metal separating layer. The high-melting metal layer is composed of at least one of tantalum, molybdenum, and tungsten. The metal separating layer is composed of aluminum, gold, or silver. The catalyst layer is composed of at least one of iron, cobalt, nickel, yttrium, titanium, platinum, and palladium, and a combination thereof. The final metal separating layer, which is arranged above the catalyst layer, is composed of aluminum.
摘要:
The invention relates to a method for the production of a nanoelement field effect transistor, a nanoelement field effect transistor and a nanoelement arrangement. According to the method for the production of a nanoelement field effect transistor, a nanoelement is formed, a first and a second source-/drain area is coupled to the nanoelement, a surface area of a substrate is removed, such that a region of the nanoelement is exposed, and a gate-insulating structure and a gate structure are formed in a covered manner fully encompassing the nanoelement.
摘要:
A communication system is disclosed. In one embodiment, the communication system includes a communication device set up to execute a process, configured to put itself into an activated state or into a deactivated state at alternate times, receive time information in a first operating state of the activated state, take the received time information as a basis for ascertaining the later time at which useful information is transmitted to the communication device, receive the useful information at the later time in a second operating state of the activated state. Individual components of the communication device are able to be put into an activated state or into a deactivated state independently of one another.
摘要:
A nanoelement field effect transistor includes a nanotube disposed on the substrate. A first source/drain region is coupled to a first end portion of the nanoelement and a second source/drain region is coupled to a second end portion of the nanoelement. A recess in a surface region of the substrate is arranged in such a manner that a region of the nanoelement arranged between the first and second end portions is taken out over the entire periphery of the nanoelement. A gate-insulating structure covers the periphery of the nanoelement and a gate structure covers the periphery of the gate-insulating structure.
摘要:
A semiconductor power switch and method is disclosed. In one embodiment the semiconductor power switch has a source contact, a drain contact, a semiconductor structure which is provided between the source contact and the drain contact, and a gate which can be used to control a current flow through the semiconductor structure between the source contact and the drain contact. The semiconductor structure has a plurality of nanowires which are connected in parallel and are arranged in such a manner that each nanowire forms an electrical connection between the source contact and the drain contact.
摘要:
The invention relates to a method for the production of a nanoelement field effect transistor, a nanoelement field effect transistor and a nanoelement arrangement. According to the method for the production of a nanoelement field effect transistor, a nanoelement is formed, a first and a second source-/drain area is coupled to the nanoelement, a surface area of a substrate is removed, such that a region of the nanoelement is exposed, and a gate-insulating structure and a gate structure are formed in a covered manner fully encompassing the nanoelement.
摘要:
A nanotube array and a method for producing a nanotube array. The nanotube array has a substrate, a catalyst layer, which includes one or more subregions, on the surface of the substrate and at least one nanotube arranged on the surface of the catalyst layer, parallel to the surface of the substrate. The at least one nanotube being arranged parallel to the surface of the substrate results in a planar arrangement of at least one nanotube. Therefore, the nanotube array of the invention is suitable for coupling to conventional silicon microelectronics. Therefore, according to the invention it is possible for a nanotube array to be electronically coupled to macroscopic semiconductor electronics. Furthermore, the nanotube array according to the invention may have an electrically insulating layer between the substrate and the catalyst layer. This electrically insulating layer preferably has a topography which is such that the at least one nanotube rests on the electrically insulating layer at its end sections and is uncovered in its central section. As a result of the surface of the at least one nanotube being partly uncovered, the uncovered surface of the nanotube can be used as an active sensor surface. For example, the uncovered surface of the nanotube can come into operative contact with an atmosphere which surrounds the nanotube array. The electrical resistance of a nanotube changes significantly in the presence of certain gases. Thus because the nanotube is clear and uncovered, the nanotube array can be used in many sensor applications.
摘要:
A circuit is disclosed. The circuit includes at least one nanostructure and a carbon interconnect formed by a substantially carbon layer, wherein the nanostructure and the carbon interconnect are directly coupled to one another.
摘要:
A semiconductor power switch and method is disclosed. In one Embodiment, the semiconductor power switch has a source contact, a drain contact, a semiconductor structure which is provided between the source contact and the drain contact, and a gate which can be used to control a current flow through the semiconductor structure between the source contact and the drain contact. The semiconductor structure has a plurality of nanowires which are connected in parallel and are arranged in such a manner that each nanowire forms an electrical connection between the source contact and the drain contact.