Abstract:
A power semiconductor module includes a power electronics substrate having a first surface, a second surface opposite the first surface, a first longitudinal side, a second longitudinal side opposite the first longitudinal side, a module frame, which is arranged to enclose the power electronics substrate, at least one power terminal which is arranged at the first longitudinal side and extends through the module frame, a further terminal, which is arranged at the second longitudinal side and extends through the module frame, at least one power semiconductor component which is arranged on the first surface of the power electronics substrate and is electrically connected to at least one power terminal, and at least one current sensor which is designed to measure a current in a power terminal. The at least one current sensor is arranged on the power terminal and has a signal output connected to the further terminal.
Abstract:
Embodiments relate to magnetic current sensors. In various embodiments, a current sensor can include a simple conductor having a constant cross-sectional profile, such as round, square or rectangular, and being generally free of any notches or slots to divert current and thereby having a simpler manufacturing process, lower resistance and improved mechanical robustness. In embodiments, the conductor can be formed of a non-magnetic conductive material, such as aluminum or copper.
Abstract:
Embodiments relate to magnetic field angle sensing systems and methods. In an embodiment, a magnetic field angle sensing system configured to determine a rotational position of a magnetic field source around an axis, comprises N sensor devices arranged in a circle concentric to an axis, wherein N>1 and the sensor devices are spaced apart from one another by about (360/N) degrees along the circle, each sensor device comprising a magnetic field sensing device having a sensitivity plane comprising at least one reference direction of the magnetic field sensing device, wherein the magnetic field sensing device is sensitive to a magnetic field component in the sensitivity plane and configured to provide a signal related to a (co)sine of an angle between the reference direction and the magnetic field in the sensitivity plane; and circuitry coupled to the N sensor devices and configured to provide a signal indicative of a rotational position of a magnetic field source around the axis determined by combining the signals from the magnetic field sensing devices of the N sensor devices.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor package includes a current rail comprising a first contact area and a second contact area, a first groove and a second groove, and a magnetic field generating portion. Along a current flow direction, the first groove is disposed between the first contact area and the magnetic field generating portion and the second groove is disposed between the magnetic field generating portion and the second contact area. The thickness of the current rail at the first groove is smaller than the thickness of the current rail at the first contact area.
Abstract:
A multiple current sensor device or a multiple current shunt device includes at least two resistive sections comprising a first resistive section and a second resistive section, at least two connecting sections comprising a first connecting section and a second connecting section and a common connecting section. The first resistive section is electrically coupled in between the first connecting section and the common connecting section. The second resistive section is electrically coupled in between the second connecting section and the common connecting section. Using an embodiment may improve a trade-off between an efficient integration, a compact integration, a compact implementation and an accurate determination of at least one value indicative of at least one of multiple currents.
Abstract:
A current sensor includes a conductive element, and at least two magnetic field sensors arranged on the conductive element and configured to sense a magnetic field generated by a current through the conductive element, wherein the at least two magnetic field sensors are arranged on opposite sides of a line perpendicular to a current flow direction in the conductive element. The current sensor further includes an insulating layer arranged between the conductive element and the magnetic field sensors, and at least two conductor traces provided on the insulating layer, wherein one end of the conductor traces connects to a respective magnetic field sensor, and the other end of the conductor traces providing a terminal for outputting the sensor signals. The conductor traces are arranged such that they do not extend entirely around the conductive element.
Abstract:
A magnet for a magnetic angle sensing system, the magnet having a tapered geometry in parallel with a rotation axis of the magnet, and configured to be mounted to a rotatable member such that a thin end of the magnet is closer to a magnetic field sensing element located on the rotation axis than a broad end of the magnet.
Abstract:
A Hall sensor apparatus has a Hall effect field with at least five contacts which are wired to at least five connections, wherein none of the at least five contacts is wired to more than one of the at least five connections, a supply circuit and a measurement circuit. In a first operational phase, a supply current enters the Hall effect field or leaves the Hall effect field through one single connection of the at least five connections, and two differential signals are measured at different common-mode potentials in each case between two of the at least five connections. The measurement circuit is designed to combine the measured differential signals into a total signal.
Abstract:
A magnet arrangement including at least one magnetic element providing a modulated magnetization in a first direction and an essentially constant magnetization in a second direction different from the first direction.
Abstract:
A magnetic angle sensing system is suggested comprising first, second, and third magnetic sensing devices, a substrate comprising the first, second and third magnetic sensing devices, wherein the first, seconds and third magnetic sensing devices are each arranged such to be responsive to a magnetic field component that is perpendicular to a main surface of the substrate, wherein each or the first, second and third magnetic sensing devices comprises the same number of magnetic sensing elements, wherein the second magnetic sensing device is arranged on the semiconductor surface rotated by 120° in view of the first magnetic sensing device clockwise around a reference point, wherein the third magnetic sensing device is arranged on the semiconductor surface rotated by 120° in view of the first magnetic sensing device counter-clockwise around the reference point.