Abstract:
Disclosed are replenisher compositions and methods of replenishing pretreatment compositions. The methods include adding a replenisher composition to a pretreatment composition wherein the replenisher composition includes: (a) a dissolved complex metal fluoride ion wherein the metal ion comprises a Group IIIA metal, Group IVA metal, Group IVB metal, or combinations thereof; (b) a component comprising an oxide, hydroxide, or carbonate of Group IIIA, Group IVA, Group IVB metals, or combinations thereof; and optionally (c) a dissolved metal ion comprising a Group IB metal, Group IIB metal, Group VIIB metal, Group VIII metal, Lanthanide Series metal, or combinations thereof.
Abstract:
The invention includes a composite material for use in a security device including a radiation diffracting component that exhibits a first optical effect and a photochromic component that exhibits a second optical effect. The composite material is particularly suited for use in authenticating articles, such as currency.
Abstract:
A method for processing a Channel State Information Reference Signal (CSI-RS) in a wireless communication system based on a multiple access scheme is provided. The CSI-RS transmission method defines a plurality of CSI-RS patterns, assigns the CSI-RS patterns to individual cells, uses the CSI-RSs alternately per Physical Resource Block (PRB) so as to utilize the transmission powers of all antenna ports for transmitting CSI-RSs, transmits Coordinated Multi Point (CoMP) CSI-RSs and non-CoMP CSI-RSs separately, and mutes specific resources in association with the CSI-RS pattern of adjacent cells.
Abstract:
The invention includes a radiation diffracting member having a crystalline structure comprising an ordered periodic array of hollow particles. The radiation diffracting member also includes a matrix material in which the array of particles is received.
Abstract:
Disclosed are methods for treating metal substrates that include contacting the substrate with a pretreatment composition comprising a rare earth metal and a zirconyl compound. The present invention also relates to coated substrates produced thereby and further to substrates additionally coated with an electrophoretically applied coating composition.
Abstract:
A method and apparatus for selecting and allocating antennas efficiently are provided. The method includes transmitting, to a User Equipment (UE), information indicating a configuration of a plurality of Channel Status Information Reference Signals (CSI-RSs) through UE specific signaling during an initial access attempt with the UE; receiving, from the UE, CSI-RS measurement results indicating configured CSI-RSs; transmitting CSI-RSs corresponding to a set of available distributed ports (D-ports) based on received signal strength information included in results of the CSI-RS measurement; and determining a CSI-RS of a selected D-port set for use in communications based on feedback information received from the UE.
Abstract:
Disclosed are methods for making polymeric substrates, such as polycarbonate substrates, at least partially coated with a haze-free, self-healing coating. Also disclosed are substrates made by such methods.
Abstract:
A radiation curable coating comprising the reaction product of a polyol and a polycarboxylic acid/anhydride is disclosed. The reaction product may be made from at least some biomass derived compound. Coatings wherein this reaction product is further reacted with a hydroxyl-carboxylic acid and/or a compound having a radiation curable moiety are also disclosed, as are substrates coated with any of these coatings.
Abstract:
A radiation curable coating comprising the reaction product of a polyol and a polycarboxylic acid/anhydride is disclosed. The reaction product is made from at least some biomass derived compound. Coatings wherein this reaction product is further reacted with a hydroxyl-carboxylic acid and/or a compound having a radiation curable moiety are also disclosed, as are substrates coated with any of these coatings.
Abstract:
Radiation curable coating compositions are disclosed. The radiation curable coating composition comprises a) an organic film-forming binder comprising (i) a urethane (meth)acrylate comprising the reaction product of reactants comprising a polyol and a polyisocyanate comprising at least two (meth)acrylate functional groups per molecule; and (ii) a highly functional (meth)acrylate; and b) a (meth)acrylate functional silsesquioxane dispersed in the binder. Also disclosed are related methods for coating a substrate, coated substrates and cured coatings formed from the radiation curable coating compositions.