摘要:
An anti-reflective coating composition includes a solvent and about 20 to about 35 percent by weight of a polymer prepared by a condensation reaction of an acrylate polymer including a hydroxyl group with a derivative of muramic acid and a derivative of mandelic acid.
摘要:
Provided are an electron injecting layer formed by spin-coating a solution of a superacid salt, a lithium salt or a mixture thereof dissolved in a solvent, a photovoltaic device including the same, a method of manufacturing the photovoltaic device, and an organic light-emitting device including the electron injecting layer.
摘要:
A transistor includes a substrate and an isolation region disposed in the substrate. The isolation regions defines an active region comprising upper and lower active regions, the upper active region having a first width and the lower active region having a second width greater than the first width. An insulated gate electrode extends through the upper active region and into the lower active region. Source and drain regions are disposed in the active region on respective first and second sides of the insulated gate electrode. The insulated gate electrode may include an upper gate electrode disposed in the upper active region and a lower gate electrode disposed in the lower active region, wherein the lower gate electrode is wider than the upper gate electrode. Related fabrication methods are described.
摘要:
A transistor including an active region and methods thereof. The active region may include corners with at least one of a rectangular, curved or rounded shape. The methods may include isotropically etching at least a portion of the active region such that the portion includes a desired shape.
摘要:
An inner spacer is formed in a sidewall of a gate in contact with a first active region that is electrically connected to an upper capacitor, thereby reducing a gate induced drain leakage (GIDL). A structure of a recess gate transistor includes a gate insulation layer, a gate electrode, a first gate spacer, a second gate spacer and source/drain regions. The gate insulation layer is formed within a recess. The gate electrode is surrounded by the gate insulation layer and is extended from within the recess. The first gate spacer is spaced with a predetermined distance horizontally with a portion of the gate insulation layer, being formed in a sidewall of the gate electrode. The second gate spacer is formed in another part of the sidewall of the gate electrode. The source/drain regions are formed mutually oppositely on first and second active regions with the gate electrode therebetween.
摘要:
Wirings including first conductive layer patterns and insulating mask layer patterns are formed on a substrate. Insulating spacers are formed on sidewalls of the wirings. Self-aligned contact pads including portions of a second conductive layer are formed to contact with surfaces of the insulating spacers and to fill up a gap between the wirings. An interlayer dielectric layer is formed on the substrate where the contact pads are formed and is then partially etched to form contact holes exposing the contact pads. A selective epitaxial silicon layer is formed on the contact pads exposed through the contact holes to cover the insulating mask layer patterns. Thus, a short-circuit between the lower wiring and an upper wiring formed in the contact holes is prevented.
摘要:
A semiconductor memory device includes a plurality of bit line structures arranged in parallel on a semiconductor substrate and having a plurality of bit lines and an insulating material surrounding the bit lines, an isolation layer formed in a portion in spaces between the bit line structures to define a predetermined active region and having substantially the same height as the bit line structures, a semiconductor layer formed in the predetermined active region surrounded by the bit line structures and the isolation layer and having substantially the same height as the bit line structures and the isolation layer, a plurality of word line structures arranged in parallel on the bit line structures, the isolation layer, and the semiconductor layer, and comprising a plurality of word lines and an insulating material surrounding the word lines, and source and drain regions formed in the semiconductor layer on either side of the word line structures.
摘要:
A semiconductor device and a method of manufacturing the same is disclosed. A trench is formed in an active region of a semiconductor substrate. A doped layer is formed on the inner walls of the trench. The trench is filled up with a first semiconductor layer. A gate insulating layer is formed on the first semiconductor layer and the substrate. Two gate electrodes are formed on the gate insulating layer such that the trench is located in between two gate electrodes. First and second impurity regions are formed in the substrate on both sides of each of the gate electrodes. Since the doped layer is locally formed in the trench area, the source and drain regions are completely separated from the heavily doped layer to weaken the electric field of PN junction, thereby improving refresh and preventing punchthrough between the source and drain.
摘要:
A method of forming a dual gate dielectric layer increases a performance of a semiconductor device by using a dielectric layer having a high dielectric constant, including forming a first dielectric layer having a predetermined thickness on a semiconductor substrate; removing the first dielectric layer formed on a second region, but leaving this layer on a first region; and forming a second dielectric layer having a dielectric constant higher than that of the first dielectric layer, on the first and second regions.
摘要:
Recessed gate transistor structures and methods for making the same prevent a short between a gate conductive layer formed on a non-active region and an active region by forming an insulation layer therebetween, even though a misalignment is generated in forming a gate. The method and structure reduce the capacitance between gates. The method includes forming a device isolation film for defining an active region and a non-active region, on a predetermined region of a semiconductor substrate. First and second insulation layers are formed on an entire face of the substrate. A recess is formed in a portion of the active region. A gate insulation layer is formed within the recess, and then a first gate conductive layer is formed within the recess. A second gate conductive layer is formed on the second insulation layer and the first gate conductive layer. Subsequently, source/drain regions are formed.