摘要:
A switch circuit is provided that includes at least one main switching device and at least one shunt switching device. Each main switching device is connected in series with a conductor that carries an RF signal between an input circuit and an output circuit. Each shunt switching device is connected between a controlling terminal of the main switching device and a high frequency ground. The switch circuit can provide substantially improved OFF state isolation over other approaches.
摘要:
Ultraviolet radiation is shone within an area and detected. The detected ultraviolet radiation is monitored over a period of time to determine a set of biological activity dynamics for the area. Ultraviolet radiation detected during a calibration period can be used to provide a baseline with which analysis of subsequently detected ultraviolet radiation is compared and analyzed. When the presence of biological activity is determined within the area, ultraviolet radiation and/or one or more other approaches can be utilized to suppress the biological activity.
摘要:
A solution for designing a semiconductor device, in which two or more attributes of a pair of electrodes are determined to, for example, minimize resistance between the electrodes, is provided. Each electrode can include a current feeding contact from which multiple fingers extend, which are interdigitated with the fingers of the other electrode in an alternating pattern. The attributes can include a target depth of each finger, a target effective width of each pair of adjacent fingers, and/or one or more target attributes of the current feeding contacts. Subsequently, the device and/or a circuit including the device can be fabricated.
摘要:
An emitting device including an active region having quantum wells alternating with barriers of varying compositions is provided. The barriers can be composed of a group III-nitride based material, in which a molar fraction of one or more of the group III elements in two barriers adjacent to a single quantum well differ by at least one percent. Two barriers adjacent to a single quantum well can have barrier heights differing by at least one percent.
摘要:
A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity corresponds to the target band discontinuity.
摘要:
A method of managing radiation having a frequency in the terahertz and/or microwave regions. The method comprises providing a semiconducting device having a two-dimensional carrier gas. Plasma waves are generated in the carrier gas using a laser pulse. The frequency of the plasma waves, and as a result, the generated radiation are adjusted using a voltage applied to the semiconducting device.
摘要:
A light emitting heterostructure and/or device in which the light generating structure is contained within a potential well is provided. The potential well is configured to contain electrons, holes, and/or electron and hole pairs within the light generating structure. A phonon engineering approach can be used in which a band structure of the potential well and/or light generating structure is designed to facilitate the emission of polar optical phonons by electrons entering the light generating structure. To this extent, a difference between an energy at a top of the potential well and an energy of a quantum well in the light generating structure can be resonant with an energy of a polar optical phonon in the light generating structure material. The energy of the quantum well can comprise an energy at the top of the quantum well, an electron ground state energy, and/or the like.
摘要:
The invention relates to phosphor-conversion (PC) sources of white light, which are composed of at least two groups of emitters, such as blue electroluminescent light-emitting diodes (LEDs) and wide-band (WB) or narrow-band (NB) phosphors that partially absorb and convert the flux generated by the LEDs to other wavelengths, and to improving the quality of the white light emitted by such light sources. In particular, embodiments of the present invention describe new 3-4 component combinations of peak wavelengths and bandwidths for white PC LEDs with partial conversion. These combinations are used to provide spectral power distributions that enable lighting with a considerable portion of a high number of spectrophotometrically calibrated colors rendered almost indistinguishably from a blackbody radiator or daylight illuminant, and which differ from distributions optimized using standard color-rendering assessment procedures based on a small number of test samples.
摘要:
The current invention discloses polychromatic sources of white light, which are composed of at least two groups of colored emitters, such as light-emitting diodes (LEDs) are disclosed. Based on a novel approach of the assessment of quality of white light using 1269 test color samples from the enhanced Munsell palette, the spectral compositions of white light composed of two to five (or more) narrow-band emissions with the highest number of colors relevant to human vision rendered almost indistinguishably from a blackbody radiator are introduced. An embodiment of the current invention can be used, in particular, for designing polychromatic sources of white light with the ultimate quality capable of rendering of all colors of the real world.
摘要:
An improved nitride-based light emitting heterostructure is provided. The nitride-based light emitting heterostructure includes an electron supply layer and a hole supply layer with a light generating structure disposed there between. The light generating structure includes a set of barrier layers, each of which has a graded composition and a set of quantum wells, each of which adjoins at least one barrier layer. Additional features, such as a thickness of each quantum well, can be selected/incorporated into the heterostructure to improve one or more of its characteristics. Further, one or more additional layers that include a graded composition can be included in the heterostructure outside of the light generating structure. The graded composition layer(s) cause electrons to lose energy prior to entering a quantum well in the light generating structure, which enables the electrons to recombine with holes more efficiently in the quantum well.