摘要:
A light guided pixel having a guide layer and a light detector layer. The guide layer has a light guide. The light detector layer has a light detecting element that receives light channeled by the light guide. The light guide may include a filter for channeling emissions to the light detecting element.
摘要:
Embodiments of the present invention relate a nondiffracting beam detection module for generating three-dimensional image data that has a surface layer having a first surface and a light transmissive region, a microaxicon, and a light detector. The microaxicon receives light through the light transmissive region from outside the first surface and generates one or more detection nondiffracting beams based on the received light. The light detector receives the nondiffracting beams and generates three-dimensional image data associated with an object located outside the first surface based on the one or more detection nondiffracting beams received. In some cases, the light detector can localize a three-dimensional position on the object associated with each detection nondiffracting beam received. In other cases, the light detector can determine perspective projections based on the detection nondiffracting beams received and generates the three-dimensional image data, using tomography, based on the determined perspective projections.
摘要:
Embodiments of the present invention relate to a method for computing depth sectioning of an object using a quantitative differential interference contrast device having a wavefront sensor with one or more structured apertures, a light detector and a transparent layer between the structured apertures and the light detector. The method comprises receiving light, by the light detector, through the one or more structured apertures. The method also measures the amplitude of an image wavefront, and measures the phase gradient in two orthogonal directions of the image wavefront based on the light. The method can then reconstruct the image wavefront using the amplitude and phase gradient. The method can then propagate the reconstructed wavefront to a first plane intersecting an object at a first depth. In one embodiment, the method propagates the reconstructed wavefront to additional planes and generates a three-dimensional image based on the propagated wavefronts.
摘要:
An optical phase processing system for a scattering medium. A first beam has a direction and a wavefront and the first beam is configured to enter a holographic recording medium. A scattering medium is illuminated by a signal beam generating at least one scattered beam. An interference pattern is recorded from the at least one scattered beam and the first beam. A second beam is generated in a direction opposite to the direction of the first beam, the second beam having a wavefront and a phase substantially opposite to a phase of the wavefront of the first beam, and the second beam is configured to enter the holographic recording medium. The second beam and the interference pattern interact to generate at least one reconstructed beam having a phase substantially opposite to a phase of the at least one scattered beam, and the at least one reconstructed beam is configured to be viewable through the scattering medium.
摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique that may be used employs surface tension at a hydrophobic surface to passively pump the fluid sample through the fluid channel. Another technique uses electrodes to adjust the position of objects in the fluid channel. Another technique computationally adjusts the focal plane of an image wavefront measured using differential interference contrast (DIC) based on Young's interference by back propagating the image wavefront from the detection focal plane to a different focal plane. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
A surface wave assisted system having an aperture layer with a surface and an aperture, and a plurality of grooves around the aperture. The plurality of grooves is configured to generate an optical transfer function at the aperture by inducing a surface wave for interfering with transmission of light of a range of spatial frequency.
摘要:
A super resolution optofluidic microscope device comprises a body defining a fluid channel having a longitudinal axis and includes a surface layer proximal the fluid channel. The surface layer has a two-dimensional light detector array configured to receive light passing through the fluid channel and sample a sequence of subpixel shifted projection frames as an object moves through the fluid channel. The super resolution optofluidic microscope device further comprises a processor in electronic communication with the two-dimensional light detector array. The processor is configured to generate a high resolution image of the object using a super resolution algorithm, and based on the sequence of subpixel shifted projection frames and a motion vector of the object.
摘要:
Embodiments of the present invention relate to techniques for improving optofluidic microscope (OFM) devices. One technique which may be used eliminates the aperture layer covering the light detector layer. Other techniques retain the aperture layer, reversing the relative position of the light source and light detector such that light passes through the aperture layer before passing through the fluid channel to the light detector. Another technique adds an optical tweezer for controlling the movement of objects moving through the fluid channel. Another technique adds an optical fiber bundle to relay light from light transmissive regions to a remote light detector. Another technique adds two electrodes at ends of the fluid channel to generate an electrical field capable of moving objects through the fluid channel while suppressing rotation. These techniques can be employed separately or in combination to improve the capabilities of OFM devices.
摘要:
A 4-Pi microscope for imaging a sample, comprising a first objective for focusing a first light beam on the sample at a spatial point one or more Digital Optical Phase Conjugation (DOPC) devices, wherein the DOPC devices include a sensor for detecting the first light beam that has been transmitted through the sample and inputted on the sensor; and a spatial light modulator (SLM) for outputting, in response to the first light beam detected by the sensor, a second light beam that is an optical phase conjugate of the first light beam; and a second objective positioned to transmit the first light beam to the sensor and focus the second light beam on the sample at the spatial point, so that the first light beam and the second light beam are counter-propagating and both focused to the spatial point.
摘要:
An optofluidic microscope device is disclosed. The device includes a fluid channel having a surface and an object such as a bacterium or virus may flow through the fluid channel. Light imaging elements in the bottom of the fluid channel may be used to image the object.