摘要:
Multi-antenna transmission control presented herein involves generating a set of virtual channel realizations at the transmitter that shares the same second-order statistics as the actual channel realizations observed for a targeted receiver. By making the control-related quantities of interest at the transmitter depend on the long-term statistics of the channel, the actual channel realizations are not needed for transmission control, e.g., for accurate Multiple-Input-Multiple-Output (MIMO) preceding. As such, the use of virtual channel realizations enables transmission control that approaches the “closed-loop” channel capacity that would be provided by full feedback of the (instantaneous) actual channel realizations, without requiring the overhead signaling burden that attends full feedback.
摘要:
Compressive sampling is used to generate pilot symbols to be transmitted over an array of antennas in a MIMO wireless communications device. A pilot symbol is transmitted over the array of antennas according to a spatially randomized antenna transmission function that randomly changes across the array of antennas. The randomized antenna transmission function may randomly select/deselect antennas and/or randomly change amplitude and/or phase of the pilot symbol transmission. Channel estimates can be constructed at a receiver based on the spatially randomized pilot symbols that were transmitted.
摘要:
A compression/decompression method for backhaul communication of a complex-valued radio signal between base stations and the network processing unit, such as a Central Processor of a Coordinated MultiPoint (CoMP) system, significantly reduces backhaul bandwidth. The spatial and temporal correlations of the wireless IQ signal are exploited in order to remove redundancy and substantially reduce signal bandwidth. Feature component signals of significance are extracted through linear transformation to form the radio signal, and are individually quantized, possibly at different bit rates in accordance with their relative importance. The transformation can either be pre-determined or computed in real-time based on the spatial and temporal statistics of the radio signal. In the latter case, the transformation matrix or matrices are also sent over the backhaul in order to allow the radio signal to be reconstructed at the receiving end. Different methods of generating the transformation matrices are proposed.
摘要:
According to methods and apparatus taught herein, user equipments (UEs) in a wireless communication network are scheduled based on determining received signal power densities for a plurality of UEs to be scheduled, allocating UEs to scheduling intervals based on a sorting of their received signal power densities, and assigning UEs in the same scheduling interval to mirror frequency bands within an available frequency spectrum according to the sorting. For example, UEs to be scheduled are assigned to a given scheduling interval in rank order of their received signal power densities until the scheduling interval is fully allocated. Remaining UEs are assigned in rank order to one or more other scheduling intervals, and the process may be repeated or otherwise carried out on an ongoing basis. Such an allocation scheme tends to minimize both adjacent frequency and mirror frequency interferences between UEs scheduled in the same interval.
摘要:
A compression/decompression method for backhaul communication of a complex-valued radio signal between base stations and the network processing unit, such as a Central Processor of a Coordinated MultiPoint (CoMP) system, significantly reduces backhaul bandwidth. The spatial and temporal correlations of the wireless IQ signal are exploited in order to remove redundancy and substantially reduce signal bandwidth. Feature component signals of significance are extracted through linear transformation to form the radio signal, and are individually quantized, possibly at different bit rates in accordance with their relative importance. The transformation can either be pre-determined or computed in real-time based on the spatial and temporal statistics of the radio signal. In the latter case, the transformation matrix or matrices are also sent over the backhaul in order to allow the radio signal to be reconstructed at the receiving end. Different methods of generating the transformation matrices are proposed.
摘要:
Compressive sampling is used to generate pilot symbols to be transmitted over an array of antennas in a MIMO wireless communications device. A pilot symbol is transmitted over the array of antennas according to a spatially randomized antenna transmission function that randomly changes across the array of antennas. The randomized antenna transmission function may randomly select/deselect antennas and/or randomly change amplitude and/or phase of the pilot symbol transmission. Channel estimates can be constructed at a receiver based on the spatially randomized pilot symbols that were transmitted.
摘要:
A system for managing radio access resources includes a joint radio resource management/transport resource management unit configured to communicate with a plurality of radio units over a transport network, to jointly allocate radio resources at the radio unit and transport resources on the transport network in response to requests from wireless terminals requesting access to radio resources from the radio units, to send a radio resource allocation schedule to the plurality of radio units that defines radio resource allocations for the wireless terminals, and to generate a transport resource allocation schedule that defines transport resource allocations for the wireless terminals. The system further includes a transport resource controller configured to receive the transport resource allocation schedule and to map user data to physical transport resources on the transport network in response to the transport resource allocation schedule.
摘要:
A method of equalizing a received signal compensates for frequency selectivity of the communication channel taking into account channel estimation errors. The method comprises generating channel estimates for the received signal, computing filter weights for an equalizer based on said channel estimates and a covariance of the channel estimation error, and filtering the received signal using the computed filter weights.
摘要:
A method of equalizing a received signal compensates for frequency selectivity of the communication channel taking into account channel estimation errors. The method comprises generating channel estimates for the received signal, computing filter weights for an equalizer based on said channel estimates and a covariance of the channel estimation error, and filtering the received signal using the computed filter weights.
摘要:
Channel Quality Indicator (CQI) tables are tailored to one or more cells of interest. Tailoring CQI tables to individual cells permits devices such as radio base stations to more reliably and accurately allocate radio resources to those cells since channel conditions vary from cell to cell. According to one embodiment, a table of CQI values is composed by analyzing information indicating channel quality in a cell of interest and generating at least one table of CQI values tailored to the cell of interest based on the information analyzed. The tailored CQI table may be deployed to another device for use in reporting channel quality information. The device may report channel quality by accessing the tailored CQI and identifying the range of CQI values that includes a channel quality estimate derived by the device. The device generates a channel quality information message based on the identified range of CQI values.