Abstract:
A method to perform dynamic source selection within an IP multicast network is performed at a designated router of an IP multicast network. At the designated router within the IP multicast network, a first source of a multicast group is selected to be forwarded to a receiving host or multiple receiving hosts. The first source is monitored to automatically detect when the first source exhibits a predetermined characteristic. At the designated router, responsive to the detection that the first source exhibits the predetermined characteristic, a second source of the multicast group is automatically selected to be forwarded to the receiving host or hosts. The method also supports automatic selection of all normally operating sources and forwarding of the traffic of such sources or channels to the receiving hosts or hosts.
Abstract:
In a particular embodiment, a method includes receiving a first request to retransmit a first packet. The method also includes selectively retransmitting the first packet based on a first list that identifies packets to retransmit and based on a second list that identifies packets that have been retransmitted.
Abstract:
A method includes receiving a channel change request from a set-top box (STB) coupled to a packet-based network, where the STB is located at a subscriber premises. The channel change request includes a value identifying one or more of a number of STBs and a number of display devices that are located at the subscriber premises. The method also includes allocating an overhead bandwidth to the STB based on the value.
Abstract:
Communication between a source and a destination is dynamically established. A connection request is received. The connection request is based on a request transmitted over a best-effort path from the source. A network connection is established having a specified quality of service (QoS) based on the request between the source and the destination. Data for a first application is transmitted over the network connection and data for a second application is transmitted over the best-effort path.
Abstract:
Policy-based routing of packets over a peer-to-peer, quality of service connection includes sending a connection setup request, over a control connection to a connection establishing device, to dynamically establish the peer-to-peer, quality of service connection between a source peer implemented on at least one device and a destination peer implemented on at least one device. Packets originating from an application requiring a specified level of service are transmitted, from the source peer implemented on at least one device, over the peer-to-peer, quality of service connection. Packets originating from an application that does not require the specified level of service are transmitted, from the source peer implemented on at least one device, over a best effort connection.
Abstract:
A subscriber dynamically establishes a peer-to-peer session from a source subscriber to a destination subscriber across a switched virtual circuit (SVC). A signaling (control) connection is established from the source subscriber to a server, and a connection request is sent via the signaling (control) connection to the server requesting establishment of the SVC to the destination subscriber. In response, a database is queried for information about a source switch associated with the source subscriber and a destination switch associated with the destination subscriber. Subsequently, the connection request is forwarded to a proxy signaling agent, and the proxy signaling agent signals the source switch and the destination switch to dynamically establish the SVC connection from the source switch to the destination switch. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
A method to deliver video content is disclosed and includes sending a bandwidth change request from a set-top box device associated with a home network to a server via an Internet Protocol Television (IPTV) access network. The bandwidth change request includes a requested bandwidth change event and an upper limit overhead bandwidth factor. The method also includes receiving video packets related to the bandwidth change event from the server at an increased rate corresponding to the upper limit overhead bandwidth factor.
Abstract:
The present invention relates generally to a data communication system, a virtual interworking trunk interface within a device to form a universal virtual private network, and methods of operating a virtual private network. In a particular embodiment, the data communication system includes a first portion of a virtual private network, a second portion of the virtual private network, a virtual switch instance associated with the first portion of the virtual private network, a virtual router instance associated with the second portion of the virtual private network, and a virtual interworking trunk interface coupled to the virtual switch instance and to the virtual router instance.
Abstract:
The disclosed method and system provides a new service provision interface that allows operator use without requiring many of the specific technical network details, such as VRF, RT, SOO, route redistribution, etc. Further, the translation from a customer's requirements (including both VPN topology membership requirement and L2, L3 requirement from customer) into technical network configuration commands are handled using an automated method that is transparent to the operator. In a particular illustrative embodiment of this patent disclosure, a high level table with reduced technical detail is generated by an operator and an automated provisioning system, without operator visibility or required operator interaction, creates intermediate data including network specific technical information in an automated process to generate a deployable network topology including VRF and RT assignments for use in network provisioning.