Abstract:
Disclosed are methods and resulting structures which provide an opening for epitaxial growth, the opening having an associated projection for reducing the size of the contact area on a substrate at which growth begins. During growth, the epitaxial material grows vertically from the contact area and laterally over the projection. The projection provides a stress relaxation region for the lateral growth to reduce dislocation and stacking faults at the side edges of the grown epitaxial material.
Abstract:
A variable-resistance material memory (VRMM) device includes a container conductor disposed over an epitaxial semiconductive prominence that is coupled to a VRMM. A VRMM device may also include a conductive plug in a recess that is coupled to a VRMM. A VRMM array may also include a conductive plug in a surrounding recess that is coupled to a VRMM. Apparatuses include the VRMM with one of the diode constructions.
Abstract:
Disclosed are methods and resulting structures which provide an opening for epitaxial growth, the opening having an associated projection for reducing the size of the contact area on a substrate at which growth begins. During growth, the epitaxial material grows vertically from the contact area and laterally over the projection. The projection provides a stress relaxation region for the lateral growth to reduce dislocation and stacking faults at the side edges of the grown epitaxial material.
Abstract:
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
Abstract:
Disclosed are methods and resulting structures which provide an opening for epitaxial growth, the opening having an associated projection for reducing the size of the contact area on a substrate at which growth begins. During growth, the epitaxial material grows vertically from the contact area and laterally over the projection. The projection provides a stress relaxation region for the lateral growth to reduce dislocation and stacking faults at the side edges of the grown epitaxial material.